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Robust Multivariable Feedback Design
for Uncertain Linear Systems

Mark Conrad Crews

Merton College, Oxford

Thesis Submitted for D. Phil degree Trinity Term 1992

Abstract

Realistic control strategies must address the inevitable uncertainty which accom-
panies nominal system descriptions. Even though uncertainty can often be character-
ized mathematically, effective robust control techniques have been slow to appear.
This work investigates robust control methods directed at both the analysis and
design of multivariable feedback systems in the presence of system uncertainty.

The first part of the thesis examines perturbed interaction from the generalized
Nyquist/characteristic locus perspective. This work establishes that, for a given
class of uncertainty and a specific class of gain-limited controllers, feedback compen-
sation can be optimally deployed to reduce perturbed interaction. Subsequently, this
treatment exploits the geometric eigen-structure embodied in the characteristic locus
framework along with the appropriate stationary conditions in order to characterize
the worst case uncertainty which produces the largest interaction as measured by
the perturbed misalignment angles. Furthermore, the structure of the worst case
perturbation has a particularly simple representation which facilitates the determi-
nation of the worst case interaction based on simple open-loop quantities. These
results together with the previous development of the E-Contour method complete
the overall development of the characteristic locus approach as a convenient robust
analysis tool.

In order to address robust design, the thesis transitions from the characteristic
locus perspective to the H' framework. During this process, this work produces new
mathematical theory pertaining to H' optimization. Initially, this work presents a
useful characterization of the degrees of freedom contained in the H00 problem. For
a special class of transfer functions, the degrees of freedom are deployed to attain
gramian stationarity which, in turn, produces matched error systems which have
singular value total flatness. Moreover, gramian stationarity also produces totally
stable complementary maximizing vector projections which reduce the computational
burden during super-optimization. The computational efficiency of the algorithm
is further enhanced with a minimal, explicit realization of the core recursion term.
These results are subsequently extended to cover the general class of transfer function
matrices.

Finally, this thesis develops a robust shifted H' design technique to maximize
the worst case relative stability margin. It is shown tihat when upper bounds on
the size of additive uncertainty are known, maximizing th. tolerance to uncertainty
does not form a useful design objective as compared to maximizing the relative
stability margin. The specific cost function required to maximize the relative stability
margin is formulated along with the required theory for its optimization. This work
concludes by enumerating the design process and presenting illustrative examples.

I I h aim I Imnll b en~,• nm'r
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Chapter 1

Introduction

1.1 A perspective on feedback control theory

In order to place the present work in the proper context of control engineering, it

is necessary to trace briefly some of the more important historical developments

leading to the current understanding of feedback control theory. Without doubt,

feedback is the most fundamental, requisite structure upon which control theory

rests. From the first recorded applications by the Greeks of feedback in the form

of float regulator mechanisms circa 300 B.C. (Dorf, 1989) to the numerous present

day applications in aerospace, astronautics, industry, etc., feedback has been a prime

mover in enabling technological advances by providing the means to control systems.

For instance, James Watts' invention of the fly-ball steam engine speed governor in

1769 enabled self-regulation via feedback and hence, provided considerable impetus

to the industrial revolution in terms of more efficient power generation [Ingpen and

Wilkinson, 1991].

Feedback control theory began to be formalized mathematically by James Clerk

Maxwell whose 1868 treatise on Watts' fly-ball steam engine speed governor em-

ployed a differential equation model of the governor [Maxwell, 1868; Wiener, 1948].

Although the work of Maxwell marks a significant milestone, present day feedback

control theory begins essentially with the invention of the negative feedback amplifier

by Black in the late 1920's [Siebert, 1986]. The negative feedback amplifier not only

enabled a 500-fold increase in long distance communication capability, but it also

heralded a new type of frequency domain analysis by Black's colleagues Bode and

Nyquist. Bode's feedback analysis in 1927 provided a unique relationship between the

II



I
1.1 A perspective on feedback control theory 2

gain and phase of minimum phase transfer functions subsequently exploited to yield

the concepts of gain and phase margins of feedback systems. Nyquist's contribution

in 1932 was to provide a simple open-loop experimental test to determine closed-

loop (i.e. feedback) system stability. Moreover, Nyquist's method also provided a

convenient graphical means to assess closed-loop behaviour based on the open-loop

frequency response. By the early 1950's, rigorous control tools such as Nyquist plots,

Bode gain/phase diagrams, and Evan's root-locus technique had evolved to the point

that the frequency domain approach provided a unified and coherent framework from

which analysis and design could be based, albeit only for single-input single-output

(SISO) control systems.

In the 1960's, the time domain feedback control approach emerged as a domi-

nant force with R. Kalman's treatment of the linear multivariable, or multiple-input

multiple-output (MIMO), optimization problem [Kalman et al., 1964]. Kalman's

development of the Linear Quadratic (LQ) method involved the optimization of a

weighted quadratic performance index and this implied that a linear controller could

be chosen to be the best of its type and therefore, optimal. Furthermore, in contrast

to previous design methods, the LQ method gave a synthesis procedure to compute

an optimal stabilizing state-feedback controller thereby reducing the amount of em-

pirical knowledge required by the designer [Anderson and Moore, 1989]. Finally,

Kalman's work relating state-space models to transfer functions produced the im-

portant concepts of controllability and observability of feedback systems [Kalman,

19641.

Since the LQ requirement of complete state accessibility was generally not met

in practice, Luenberger devised a state observer to reconstruct the states from out-

put measurements. The requirement for uncorrupted output measurements by the

Luenberger observer was followed by the more realistic extension of Kalman and

Bucy who derived a stochastic state estimator now well known as the Kalman-Bucy

filter [Van Trees, 1968]. Furthermore, the white Gaussian noise assumption used in

the Kalman-Bucy filter, enabled the subsequent development of the Linear Quadratic
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Gaussian (LQG) method of optimal state-feedback control.

Due to LQG's inability to deal with imprecise mathematical descriptions and

devise meaningful quadratic performance indices for many multivariable processes,

the late 1960's and 1970's witnessed a resurgence in the extension of frequency do-

main techniques to multivariable systems. Initial work sought to diagonalize the

system transfer function matrix in order to decouple the system into single loops to

permit the application of the well known SISO techniques. In order to alleviate the

difficulties in achieving complete decoupling of the system, Rosenbrock permitted a

degree of interaction in his development of the inverse Nyquist array (INA) method

which was based on Gershgorin's theorem for locating matrix eigenvalues [Rosen-

brock, 19741. Although the INA method was simple to understand and use when

diagonal dominance was easily achieved, the INA controllers were often difficult

to design and intrinsically conservative as a result of the accompanying sufficient

(but not necessary) stability test. Such issues began to be redressed by the devel-

opment of MacFarlane's Characteristic Locus Method (CLM) [MacFarlane, 1980].

The Characteristic Locus Method was based on the generalized Nyquist stability

criterion for MIMO systems which provided a necessary and sufficient closed-loop

stability assessment based on the open-loop eigenfunction frequency response plots

called characteristic loci. The eigenfunctions were shown to be analytic functions of

frequency almost everywhere on the complex plane and thus, the corresponding char-

acteristic loci could be used to determine the nominal and relative stability of MIMO

systems in a manner analogous to the use of Nyquist plots for SISO systems. By

working in the eigenframe of the system, the Characteristic Locus Method enabled

SISO design techniques to be employed on individual MIMO loops and therefore,

the generalized Nyquist/characteristic locus structure provided a convenient and

appropriate framework for accomplishing feedback controller design.
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1.2 Feedback control theory for uncertain sys-

tems

The methods of the previous section have provided much insight into dynamic feed-

back system behaviour as well as mathematically rigorous design methodologies;

however, they all presuppose a completely known system (with the partial exception

of the LQG method). In order to extend these methods to include more realistic

control problems, much research over the last two decades has been directed at the

issue of uncertainty in the mathematical model of the system or plant. Robust control

methods address plant uncertainty by using suitable uncertainty characterizations in

order to satisfy not only nominal stability and performance requir -nents, but also

robust stability and performance objectives as well. In this context, the frequency

domain control tools have achieved preeminence due to their effectiveness in in-

corporating various uncertainty characterizations. Moreover, these methods have

re-established links to the earlier work of Bode and Nyquist. Before considering the

status of the current robust multivariable frequency domain techniques, it is useful to

survey the LQG time domain approach from an uncertainty robustness perspective.

The LQ optimal control method initially addressed "robustness" with precise

statements regarding guaranteed stability margins [Safonov and Athans, 1977]; how-

ever, Doyle and Stein subsequently demonstrated that LQ designs could result in

relatively poor stability margins [Doyle, 1978; Doyle and Stein, 1979]. Next, in order

to regain the desirable stability margins offered by LQG designs, Doyle and Stein de-

veloped a Loop Transfer Recovery (LTR) procedure [Doyle and Stein, 1981]; however,

the LQG/LTR procedure was guaranteed to work only with minimum phase plants.

Furthermore, from an uncertainty robustness perspective, the LQG/LTR approach

only admitted well-defined white Gaussian noise processes acting on the plant and

measurements. Thus, the LQG/LTR formulation has been unable to incorporate the

uncertainty characterizations essential for robust design, although the technique has

earned further value as a frequency domain loop-shaping tool [Maciejowski, 1989].
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Of the frequency domain techniques presented in the previous section, the gener-

alized Nyquist/CLM with its concomitant necessary and sufficient stability criterion

was found to be appropriate for extension to robust applications. Previous problems

with eigenvalue sensitivity were addressed by Daniel and Kouvaritakis with their de-

velopment of the E-Contour method to locate the exact eigenvalue inclusion regions

in the complex plane [Daniel and Kouvaritakis, 1984; Daniel and Kouvaritakis, 1985].

The perturbed characteristic locus bands produced by plotting the E-Contour regions

over a preselected set of frequencies enabled an immediate generalized Nyquist stabil-

ity assessment of the uncertain system. Significantly, these results were subsequently

extended by Kouvaritakis and Latchman to cater for the structured uncertainty case

which exploits bounds on the individual uncertainty transfer function matrix ele-

ments [Kouvaritakis and Latchman, 1985; Kouvaritakis and Latchman, 1986; Daniel

et al., 1986]. These results confirmed that the generalized Nyquist technique could

provide an important robust analysis tool; however, the corresponding robust design

procedure is continuing to be developed as discussed next.

Similar to the SISO Nyquist technique, the generalized Nyquist framework al-

lowed robust design objectives to be formulated in terms of shaping the charac-

teristic loci about the critical point. Based on this strategy, Kouvaritakis and

Trimboli developed a iobust generalized Nyquist design technique to construct a

robust proportional-plus-integral (PI) controller by optimizing the characteristic loci

locations at successive frequency points [Kouvaritakis and Trimboli, 1989; Trim-

boli, 1989]. Moreover, the optimizations were obtained by exploiting the geometric

alignment properties, based on the Major Principal Direction Alignment Principle

(MPDA) [Kouvaritakis and Latchman, 1985], of the relevant matrices at each fre-

quency point. Although this work underscored the potential of robust characteristic

locus design, it imposed artificial constraints in the design process in order to en-

sure nominal stability. Furthermore, in comparison with the CLM design process,

the corresponding robust design technique did not address the issue of interaction

although the present work has made significant progress in this direction as seen in
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the sequel.

The most active area of current robust design research has focused on the evolving

H' optimal control methodology initiated by Zames to counter the inadequate LQG

robustness properties which were derived from the unrealistic additive white noise

assumptions [Zames, 19811. By incorporating unstructured uncertainty characteri-

zations (i.e. the uncertainty is characterized by a scalar modulus bounding function)

in the H'O optimization problem, HOO optimal control theory has yielded solutions to

both the additive uncertainty robustness problem [Glover, 1986] as well as the mixed

disturbance rejection performance and multiplicative output uncertainty robustness

problem [Doyle, 1984; Francis, 1987]. The way in which the H' optimization prob-

lem includes the unstructured uncertainty characterizations is by casting the problem

in terms of the minimization of the H°--norm (defined for a transfer function matrix

G(s) as IIG(s)II. = sup,,' [G(jw)]) of weighted transfer function matrices. The

weighting functions themselves either contain the unstructured uncertainty charac-

terization or reflect the desired performance objectives.

H' optimal design is essentially a synthesis procedure which yields robust con-

trollers in a fashion reminiscent of LQG synthesis. The HOO optimal control problem

is initially formulated as a nonlinear minimization ranging over the entire class of

internally stabilizing controllers and subsequently transformed into an affine mini-

mization via the Youla parametrization of stabilizing controllers [Youla et al., 1976;

Doyle, 1984]. This latter optimization ranges over an unknown stable transfer func-

tion matrix and is, like the previous optimization, weighted by the appropriate un-

certainty characterization. The optimization process can be viewed as a distance

problem in which the stable function (i.e. the H' optimal function) is chosen to be

the closest to the given unstable function. This distance problem was first solved

analytically by Nehari [Nehari, 1957] for the SISO case and by Adamjan, Arov, and

Krein [Adamjan et al., 1978] for the MIMO case. Subsequently, Glover character-

ized the optimal solutions using state-space formulae for the special MIMO case

in which the unknown stable transfer function matrix has the same dimensions as
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the known unstable transfer function matrix, namely the 1-block problem [Glover,

1984]. More general (i.e. 2- and 4-block) H' MIMO problems can be computed

algorithmically using the -y-iteration technique whereby a prespecified tolerance gov-

erns the sufficiency of the "near H' optimal" solution [Chu et al., 1986; Glover and

Doyle, 1988]. More recently, [Doyle et al., 1989] have given a solution to general HII

problems directly in terms of two Riccati equations, completely bypassing the Youla

parametrization and Hankel approximation.

In comparison with the distance interpretation of Hw optimization, H' opti-

mization can also be viewed as a model-matching problem in which the H' op-

timal "model" is chosen to "match" the known "model" so that the norm of the

difference between the models is minimized over all frequency. The resulting H'

optimal solution to the model-matching (or distance) problem has long been known

to be generally nonunique and in order to restore uniqueness, Young proposed a

Strengthened Model-Matching Problem (SMMP) in which all of the singular values

of the H- cost function are minimized in lexicographic order thereby producing

super-optimality [Young, 1986a]. Although Young also developed an operator the-

oretic "existence" algorithm to achieve super-optimality, its practical implementa-

tion was questionable and so other researchers [Tsai et al., 1988; Limebeer et al.,

1989] presented practical, realizable super-optimization algorithms cast in the state-

space framework. In addition to the mathematical motivation for achieving super-

optimality (i.e. to restore solution uniqueness), others [Foo and Postlethwaite, 1986;

Kwakernaak, 1986; Postlethwaite et al., 1989] have also supplied associated engi-

neering motivation. This is summarized in [Tsai et al., 1990] which asserts that

because the super-optimal s-numbers (i.e. the actual values of the super-optimal sin-

gular values which are constant over all frequency) reflect the energy gains between

appropriately defined input and output spaces, "greater robustness" results from the

minimization of all of the H- cost function singular values, not just the largest.
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1.3 Structure of Thesis

1.3.1 Objectives

The previous two sections have provided a foundation on which the work presented in

this thesis builds. This work is directed at advancing the theory and development of

robust multivariable control methods pertaining to perturbed interaction, H** super-

optimization, and H- design for the maximization of relative stability.

This work initially seeks to understand if perturbed multivariable interaction is

inherently an open-loop property optimally minimized by a prefilter after deploying

feedback to minimize closed-loop uncertainty. If this were the case for example, it

would eliminate any possible robust extension of the high frequency nominal CLM

design process in which feedback is deployed to reduce interaction as measured by the

misalignment angles (i.e. the angles of misalignment between corresponding eigen-

vector/standard basis vector pairs). The results of the former undertaking may be

inferred by the very presence of this work's next objective which is to characterize

the worst case uncertainty which yields the maximum interaction as measured by

the misalignment angles.

In the characteristic locus framework, E-Contours can be generated from either

structured or unstructured uncertainty characterizations and hence, provide a con-

venient means of assessing both nominal and relative stability; however, E-Contours

supply only partial information regarding the interaction of perturbed systems.

Therefore, this work seeks to provide a complete perturbed interaction assessment by

characterizing the worst case uncertainty which maximizes the misalignment angles.

The fulfillment of this objective would clearly provide an efficient and convenient tool

for the appraisal of perturbed interaction based on open-loop quantities. Moreover,

it could provide the basis for the extension of the high frequency nominal CLM design

process to robust CLM design.

Even though the E-Contour method defines the worst case relative stability mar-

gin, it cannot as yet accommodate design with respect to the worst case (i.e. min-
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imum) relative stability margin. Therefore, this work shifts from the characteristic

locus perspective to the H' optimal framework with the objective of achieving the

optimal design procedure as measured by the relative stability margin. Concurrently,

this work aims to distinguish between the possibly ambiguous concepts of tolerance to

uncertainty and relative stability. This distinction would both clarify these concepts

and define the conditions under which one or the other should be pursued in design.

The objective of design for the maximization of relative stability, which this work

pursues, requires the formulation of a specific cost function to reflect this objective.

This in turn requires the specification of the theoretical constraints associated with

the optimization followed by the actual mechanics and enumeration of the design

process.

Related to the objective of maximizing relative stability using H' design is the

objective of characterizing and using the degrees of freedom within the H' opti-

mization problem. This work seeks to characterize uniquely the degrees of freedom

in a manner which facilitates their use in achieving several well-defined mathematical

properties, some of which are defined for the first time in this work. Initially, the

degrees of freedom will be deployed within a special class of systems to obtain both

singular value total flatness as well as completely stable projections in the context of

super-optimization. Subsequently, the degrees of freedom will be deployed to obtain

either singular value near flatness or minimal antistable projections in the context

of super-optimization.

1.3.2 Overview of Thesis

The work presented in this thesis falls into two principal categories pertaining to

the characteristic locus perspective and the H' optimal perspective, respectively.

Accordingly, the thesis is organized into two parts as outlined below:
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Chapter 1: Introduction

Part I Robust analysis from the characteristic locus perspective:
perturbed interaction

Chapter 2 An overview of the generalized Nyquist/characteristic locus
approach

Chapter 3 : The minimization of interaction in the presense of uncer-
tainty and controller gain limitations

Chapter 4 : Uncertainty and interaction in linear multivariable feedback
systems

Part II: Robust design from the H' perspective: super-optimization
and relative stability margin maximization

Chapter 5 : An overview of H' optimal techniques

Chapter 6 : Characterization and use of the degrees of freedom in the
HOO problem

Chapter 7 Using the degrees of freedom in the general case

Chapter 8 : An evaluation of super-optimality as a control tool: a relative
stability perspective

Chapter 9 : H' design for the maximization of relative stability

Chapter 10 : Conclusions and future work

The thesis begins in Chapter 2 by presenting an overview of the generalized

Nyquist/characteristic locus approach. Initially, the structured and unstructured

uncertainty models are defined along with their associated perturbed stability condi-

tions. This is followed by a brief description of the E-Contour method which will be

useful for later assessments of both stability and relative stability. Next, a summary

of the nominal and robust aspects of the generalized Nyquist/characteristic locus

approach is presented and particular emphasis is placed on how the design process

addresses interaction.

With the generalized Nyquist/characteristic locus approach in proper perspec-

tive, Chapter 3 examines the issue of perturbed interaction in order to counter the

widely-held belief that multivariable interaction is an open-loop property optimally

i
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minimized by a prefilter after deploying feedback to minimize closed-loop uncer-

tainty. A specific example is given to illustrate that for a given class of gain-limited

controllers and a specific class of structured uncertainty, interaction is optimally ad-

dressed by the feedback compensator rather than the decoupling prefilter/uncertainty

minimizing feedback compensator combination.

By considering the appropriate stationary conditions, Chapter 4 characterizes

the worst case perturbation which produces the largest interaction in terms of mis-

alignment angles. This information together with the modulus information derived

from the E-Contours can be deployed to supplement the nominal plots of eigenvalue-

moduli and misalignment angles versus frequency with plots of bands of possible

eigenvalue-moduli and possible misalignment angles versus frequency. The combina-

tion of resulting plots provides a convenient graphical means of assessing interaction

in the presence of uncertainty.

The transition to robust H' optimal design begins in Chapter 5 with an overview

of the relevant aspects of the H' optimization problem. Here, the standard H-

problem is presented and internal stability is defined along with the Youla stabilizing

controller parametrization. Finally, the relationship between the H00 problem and

Hankel approximation is outlined in order to lay the groundwork for the theoretical

treatment of the following chapter.

Chapter 6 presents a useful characterization of the degrees of freedom contained

in the H10 problem. For the special class of transfer function matrices considered, the

degrees of freedom can be deployed to yield stationarity of either the observability or

controllability approximation system gramians. This stationarity, in turn, produces

matched error systems (i.e. the error system's controllability or observability pairs are

identical to the right or left maximizing vector, respectively) which have the singular

value total flatness property, defined for the first time in this work. Moreover, in the

context of a super-optimal algorithm, the approximation system gramian stationarity

also produces totally stable complementary maximizing vector projections which in

turn lessens the computational burden of the attendant super-optimal algorithm.

SIc q U- - • m i l l llm km muli
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The computational efficiency of the algorithm is further enhanced with a minimal,
explicit realization of the core recursion term.

The results of Chapter 6 are extended in Chapter 7 to cover the general class

of transfer function matrices. Here, the degrees of freedom are deployed to yield

either singular value near flatness or minimal antistable projections in the context

of super-optimization. In order to reduce state inflation and allow the possibility

of early termination of the super-optimal algorithm, a strict norm constraint on the

degree of freedom parameter is required. This constraint is met through a composite

Riccati equation formed by merging the gramian stationary conditions with their

respective Riccati equations. Furthermore, this special Riccati equation has a unique

closed-form solution (independent of the partitioned eigenvectors of the Hamiltonian

matrix) which may be expressed in terms of the known Markov-type parameters

defined by the characterization of the degrees of freedom in the H°° problem.

Chapter 8 considers a simple class of H' super-optimal controllers from a relative

stability perspective.

Chapter 9 presents a newly developed design technique to maximize the worst

case relative stability margin. Here, the distinction is made between the objectives of

tolerance to uncertainty and relative stability. This distinction is accompanied with

an outline of the conditions under which one or the other should be pursued in design.

It is argued that relative stability forms the more sensible objective when there exists

an accurate uncertainty envelope function as is often the case in practice. The specific

cost function required to maximize the relative stability margin is formulated. Next,

the theory required for the optimization of the cost function is developed and finally,

the design process itself is given along with illustrative examples.

A summary of the work is provided in Chapter 10 together with proposals for

future research.

1.3.3 Notation

The following notational conventions shall be used throughout the thesis:

I II nmm mnl _iiiim m•
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SISO Single-Input/Single-Output

MIMO Multiple-Input/Multiple-Output

CLM Characteristic Locus Method

E-Contour Plot of the Eigenvalue inclusion region Contour

MPDA Major Principal Direction Alignment

LQG Linear Quadratic Gaussian

SMMP Strengthened Model Matching Problem

inf infimum

sup supremum

max maximum

min minimum

xt :the transpose of vector x

xT the transpose of vector x

x* :the complex-conjugate transpose of vector x

e :the ith standard basis vector

Jlxil Euclidean norm of vector x defined by V/Ri

AT : the transpose of matrix A

A [A] : an eigenvalue of matrix A

w : a right eigenvector

vT : a left eigenvector

p(A) : the spectral radius of matrix A defined as the

magnitude of the maximum modulus eigenvalue

a [A] : a singular value of matrix A

- [A] : the maximum singular value of matrix A

g- [A] : the minimum singular value of matrix A

T [A] : the major principal output direction of matrix A

z [A] : the minor principal output direction of matrix A

V (A] : the major principal input direction of matrix A

[ (A] : the minor principal input direction of matrix A
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7 [A] I [B] the MPDA property between the output major principal

direction of matrix A and the input major principal

direction of matrix B whereby Y [A] = e(jo)" [B] for some

real scalar constant a

R+ :a nonnegative real scalar

R.Xn :the set of n x n matrices with nonnegative real entries

A an additive perturbation

Du :the unstructured class of additive uncertainty

Ds : the structured class of additive uncertainty

H2  the Hardy space of stable transfer functions with bounded

H2 norm (see below)

JIG(s)112  H2 norm of transfer function matrix G(s) defined as

[- fj! tr [G(jw)GT(-jw)I dw]"12

H' :the Hardy space of stable proper transfer functions with

bounded H' norm (see below)

IIG(s)ll : H- norm of transfer function matrix G(s) defined as

sup"f [G(jw)]

RH : the class of real rational stable transfer functions

RH : the class of real rational unstable transfer functions

= : state-space representation of transfer function matrix G(s)

G*(s) : the complex-conjugate transpose of the transfer function

matrix G(s) given by G*(s) = GT(-s)

A < B : Part I: the matrix elements satisfy Iaij !5 bij Vi,j : bii E R+

Part II: the matrix A-B is negative semi-definite

Given the following algebraic Riccati equation:

ATX +XA.- XBBTX + CTC = 0

we say that the solution X is stabilizing if Real { A, [A - BBTX] } < 0V i.
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Robust analysis from the

characteristic locus perspective:

perturbed interaction
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Chapter 2

An overview of the generalized

Nyquist/characteristic locus approach

2.1 Introduction

The classical SISO approach initiated by Bode and Nyquist has enjoyed widespread

support over the years due in large part to the insight and intuition provided by

the Bode gain/phase plots and Nyquist diagrams. For example, the Nyquist dia-

gram gives the designer immediate visual feedback concerning not only closed-loop

stability, but also concerning stability margins, steady-state performance, and the

transient response as well. The intuition revealed by the Nyquist diagram has, iL

mentioned in the previous chapter, found a natural extension to multivariable sys-

tems via characteristic transfer functions (or eigenfunctions) and the generalized

Nyquist stability criterion. The frequency response plots of the characteristic trans-

fer functions produce the characteristic loci which, in turn, convey similar insights

to those provided by the Nyquist diagram.

The characteristic transfer functions can be viewed as generalizations of SISO

transfer functions; however, they must be accessed through the spectral decomposi-

tion of the system transfer function matrix. Therefore, in order to apply SISO design

techniques to the characteristic transfer functions, the Characteristic Locus Method

(CLM) [MacFarlane, 19801 was developed. After accessing the characteristic transfer

functions through the eigenframe of the system, the CLM approach employs SISO

techniques to shape each characteristic locus (i.e. the frequency response plot of each

characteristic transfer function) as if it were an ordinary Nyquist locus and, in this

16
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way, the CLM approach achieves the required stability via the generalized Nyquist

stability criterion and desired dynamic performance objectives via proximity to the

critical point.

In the presence of modelling and identification errors the CLM approach must

be modified to deal with robust stability and performance issues. In particular, per-

turbations cause the characteristic loci to vary from their nominal locations which

implies a potential loss of stability and performance objectives. However, uncertainty

may be addressed by E-Contours (i.e. the boundaries of the eigenvalue inclusion re-

gions) and subsequently plotted at preselected frequency points to produce perturbed

characteristic locus bands. These plots provide an immediate graphical assessment

of both stability and relative stability as depicted by critical point encirclements and

the gain/phase margins respectively.

The primary purpose of this chapter is give an account of the generalized

Nyquist/characteristic locus framework in order to give the proper perspective from

which to view the first portion of the thesis dealing with perturbed interaction. In

support of this larger aim, this chapter also provides background material pertain-

ing to structured and unstructured uncertainty models together with the associated

perturbed stability conditions. This is followed by a succinct description of the

E-Contour method which will be particularly helpful in later assessments of both

stability and relative stability. Finally, a summary of the pertinent aspects of the

generalized Nyquist/characteristic locus approach is presented and particular em-

phasis is placed on how the design process addresses interaction.

2.2 Background

2.2.1 Uncertainty

Robust analysis and design techniques have the fundamental aim of addressing the

inevitable uncertainty which accompanies nominal system models. The sources of

model uncertainty are manifold and can often be attributed to unmodelled dynamics,
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the omission of higher order dynamics, and/or component variations which cause the

system to vary in unpredictable ways. Regardless of the source of uncertainty, robust

design methods require a model which characterizes the uncertainty associated with

a system. Consider the multivariable system of Fig. 2.1. This figure illustrates how

r(s) K(s) G(s) + A(s) y(s)

Figure 2.1: Perturbed multivariable system

the actual plant G(s) may be modelled as the sum of the nominal transfer function

matrix G(s) and an additive perturbation matrix A(s):

G(s) = G(s) + ,A(,)

where the perturbation A(s) accounts for the uncertainty associated with the nomi-

nal system model G(s). The degree of knowledge about system uncertainty dictates

whether the perturbation matrix A(s) has structure or not.

Unstructured uncertainty

When information concerning the individual elements of the perturbation matrix

A(s) is either unavailable or unnecessary for the specific problem, the uncertainty

information can still be conveyed through a rough perturbation size which normally

takes the form of an upper-norm bound on the perturbation matrix A(s):

7 [A(jw)] _< Ip(jw)l = 6(w) V w (2.1)

where p(s) is a scalar modulus function whose modulus, given by 6(w), bounds the

largest principal gain of the perturbation over all frequency. Such a characterization

falls within the unstructured class of uncertainty Du which may be expressed at each
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frequency s = jw as:

A E D, {JA: - I[A] S Ipl, b = IpI, 6 E R+} (2.2)

where R+ is a nonnegative real number. Moreover, since (2.2) pertains to each fre-

quency w, this characterization is valid for the entire frequency spectrum. Clearly,

the perturbation matrix A(s) has no explicit structure since there is no explicit

magnitude or phase information associated with the individual perturbation matrix

elements. Even though the unstructured uncertainty is conveyed as a rough pertur-

bation size, it is nonetheless convenient to use in analyzing both perturbed stability

and perturbed eigenvalues as will be observed after the following discussion of a more

detailed characterization of uncertainty.

Structured uncertainty

In many practical situations, more specific information is available regarding the

magnitude of uncertainty between various input/output pairs. When such informa-

tion is available, the individual elements of the perturbation matrix A(s) can be

bounded as:

IAkl(jw)I •l Idik(]w)l = pkl(W) V L (2.3)

where dki(s) is a scalar modulus function whose magnitude, given by pkl(w), bounds

the modulus of the klth element of A(s). Such a characterization falls within the

structured class of uncertainty D, which may be written at each frequency s = jw

as:

A DE {A : IAjI < pk , pPk = Idkj , P E R"Xm} (2.4)

where RmX" is the set of m x m matrices with nonnegative real entries and the klth

element of the modulus matrix P is denoted by PkL. Similar to the characterization

of the unstructured uncertainty class, (2.4) is valid over the entire frequency spec-

trum. However, in contrast to the unstructured uncertainty characterization, adding

structure to the perturbation matrix typically allows "tighter" assessments of per-
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turbed stability and perturbed eigenvalue inclusion regions by exploiting geometric

relationships between the plant and perturbation transfer function matrices.

2.2.2 Perturbed stability

The delineation between structured and unstructured uncertainty is important in

assessing robust stability because, in general, stability analyses which use only un-

structured perturbations tend to be more conservative than necessary. However,

the unstructured information allows a relatively simple analysis yielding convenient

stability evaluations. After examining the unstructured perturbation analysis, a

structured uncertainty analysis follows which illustrates how the perturbed stability

assessment can be tightened by employing the Major Principal Direction Alignment

(MPDA) principle [Kouvaritakis and Latchman, 19851.

Perturbed stability with unstructured uncertainty

Consider the system of Fig. 2.1 in which the nominal plant G' is subject to an

additive unstructured perturbation, A, with bounded norm -5 [A] < 6. Assuming

nominal closed-loop stability and that the nominal plant G and the perturbed plant

G + A have the same number of unstable poles, closed-loop stability requires the

following equivalent conditions:

I±+(G+A)KI 0 0

I + GK + AKI 0

If + AK(I + GK)-'I It + GKI J 0

The latter equation can be manipulated to yield a more useful robust stability con-

dition as will be seen below. Since the nominal plant and controller are assumed to

be stable under unity feedback, it is true that:

11 + KI 00

'For notational convenience, the frequency dependence of the transfer function matrices will be
implicit in Sections 2.2.2 and 2.2.3.
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Using this and by letting M = K(I + GK)-', the previous stability criterion can be

rewritten as:

II + AMI # 0

This equation can be further modified by use of the eigenvalue shift theorem and the

fact that a determinant equals the product of its eigenvalues to produce:

IA..x(MA)I = p(MA) < 1 (2.5)

Hence, the spectral radius provides an upper perturbed stability bound. However,

since the unstructured perturbation is bounded in norm by 6, the subsequent inequal-

ity relating singular values and eigenvalues can be employed to yield the following

stability requirement expressed in terms of singular values:

p(MAI) < 7(MA) < U(M)7(A) < 1 (2.6)

This result can be rewritten to give the following equivalent, necessary and sufficient

conditions for robust stability in the presence of an unstructured additive perturba-

tion:

-7(M) =-6: [K(I + GK)-'] < 1

_[K-1+G] > 6 (2.7)

where M = K(I + GK)-1 = [K- 1 + G]-' was reintroduced into the top inequality

and the singular value relationship -(M) = 1/_(M- 1 ) was employed. The final form

of the robust stability requirement given by (2.7) is particularly useful in the context

of unstructured uncertainty analyses; however, it can be tightened further using

MPDA analysis in the case of structured uncertainty. Essentially, MPDA also casts

the stability criterion of (2.5) in terms of singular values but uses scaling matrices

to tighten the bound as will be seen next.

Perturbed stability with structured uncertainty

The previous analysis using unstructured uncertainty applies equally to the case of

structured uncertainty since the norm information can easily be derived from the
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given structured uncertainty class. However, the stability result may be tightened

further by exploiting the uncertainty structure in conjunction with the MPDA prop-

erty in (2.6). In minimizing the upper singular value bound on the spectral radius

p(MA), MPDA deploys scaling matrices L and R to attain the major principal di-

rection alignment property between the scaled matrix M = R-1 ML-1 and the worst

case scaled perturbation matrix, A = $LPR'I where (D = diag {eJf', eJ02,..., ejO.}

and %P = diag {ein,, e)¢2,..., ei 4 "" } are appropriate phase matrices [Kouvaritakis and

Latchman, 1985]. Recalling that p(MA) < 1 for perturbed system stability, MPDA

permits the rewriting of this constraint in the following form:

p(MA) = "(R-1ML-')-&(LPR) < 1

SL(K-1 + G)R] > -e(LPR) (2.8)

where M-1 = K-1 + G and P is defined by (2.4). The attainment of the MPDA

property in (2.8) provides the tightest necessary and sufficient robust stability cri-

terion since the optimal scaling matrices L and R effectively maximize the ratio

2 jL(K-1 + G)R) /-F(LPR) for the worst case perturbation A.

2.2.3 Eigenvalue inclusion region Contours: E-Contours

In order to extend the graphical Nyquist-type criterion to perturbed systems, it

is necessary to characterize how perturbed eigenvalues deviate from their nominal

values. For a given perturbation, the perturbed eigenvalues will lie within eigenvalue

inclusion regions bounded by E-Contours which form simply connected curves that

expand with the size of the perturbation (Daniel and Kouvaritakis, 1984; Daniel and

Kouvaritakis, 1985]. To follow the analysis, consider the following definition of a

perturbed eigenvalue in the context of the system of Fig. 2.1:

JAI-GK-AKI = 0

1I - AK(AI - GK)-'-. I-AI - GKI = 0
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where A represents the perturbed eigenvalue. Provided that JW - GKI • 02, the

perturbed eigenvalue condition becomes:

p(MA) > 1 (2.9)

where M = K(AI - GK)- 1. Interestingly, the formulation of (2.9) parallels the

previous robust stability analysis with the exception of the reversed inequality.

For the case of unstructured uncertainty, the following singular value analysis pro-

vides the relationship needed to define exact eigenvalue inclusion region boundaries

or E-Contours:

p(MA) = p(K(AI - GK)-'A) Ž_ 1

S[G- _K-'] < b (2.10)

This last condition can be used to define each E-Contour as the solution of the

following equation:

1 [G - (,\ +pe"e) K-'J = 5[A] (2.11)

where p defines the radius from each nominal eigenvalue \ needed to achieve equality

of (2.11) at angle 0. Thus, (2.11) provides the basis for an algorithm which may be

solved for p as 0 varies from 0' to 3600 [Daniel and Kouvaritakis, 1985]. The solutions

may then be sorted into closed simple curves which define the E-Contour boundary.

For the case of structured uncertainty, the MPDA property can be applied to (2.9)

to convert the inequality of (2.10) to equality and hence decrease the size of the E-

Contours. The governing E-Contour equation for the structured uncertainty case

is:

g (L(G - (A + p) K-)RI= (LPR] (2.12)

where scaling matrices L and R are positive diagonal matrices introduced to achieve

MPDA. Analogous to the perturbed stability result using structured uncertainty, the

attainment of the MPDA property in (2.12) provides the tightest (i.e. smallest) E-

Contours since the optimal scaling matrices L and R effectively maximize the ratio

" [L(K-A + G)R] /'(LPR) for the worst case perturbation A.
2The contrary would imply A is a nominal eigenvalue.
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2.3 Open and closed-loop relationships

The previous discussion of uncertainty characterizations, perturbed stability, and

E-Contours, allows us to focus on the final aim of this chapter which is to give an

account of the generalized Nyquist/characteristic locus framework. We begin by

defining the characteristic transfer functions and then see how they can be accessed

through the spectral decomposition. Next, we examine the open- and closed-loop re-

lationships followed by a discussion of stability and performance objectives. Finally,

an overv;,-w of the CLM approach is given along with an enumeration of the design

steps.

A multivariable system with square m x m transfer matrix, G(s), possesses m

scalar, characteristic transfer functions, gi(s), which are the branches of the alge-

braic function g(s) defined by the following characteristic equation [MacFarlane and

Postlethwaite, 1977a]:

Ig(s)I - G(s)l = 0 (2.13)

Frequency response plots of the m characteristic transfer functions, gi(s), are pro-

duced by letting s vary over the standard D-Contour. These frequency response plots

are Nyquist-like in appearance and are called the characteristic loci3 . Before exam-

ining how the characteristic loci are used in analysis and design, first consider how

the characteristic transfer functions arise in the spectral and dyadic decompositions.

Associated with each characteristic transfer function (or eigenvalue), gi(s), is

both a characteristic direction (or right eigenvector) wi(s) and dual characteristic

direction (or left eigenvector) v!(s) 4. For an m xm open-loop transfer function matrix

G(s), all of these characteristic components are related by the following spectral and

dyadic decompositions, respectively:

G(s) = W(s)A,(s)V(s) (2.14)

'Strictly speaking, the characteristic loci are a composite of the frequency response plots of the
gi(s) where the algebraic function g(s) has as its domain separate copies of the complex plane joined
at the branch cut(s) to form a Riemann surface [MacFarlane, 19801.

4True for all a i branchpoint.

L
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- Zgi(s)wi(S)V!(s) (2.15)
i=1

where W(s) is a matrix whose columns contain the right eigenvectors wi(s), V(s)

is a matrix whose rows contain the left eigenvectors vf(s), and A,(s) is a diagonal

matrix composed of the characteristic functions gi(s). Both (2.14) and (2.15) employ

the following eigenvalue/eigenvector properties:

G(s)wi(s) = gi(s)wi(s) vf(s)G(s) = gi(s)v!(s) v!(s)wj(s) = 1 (2.16)

which are valid for i = I.... M.

With scalar precompensation and under unity feedback as shown in Fig. 2.2, the

r(s) + k G(S) y(s)

Figure 2.2: Multivariable system with scalar precompensation and unity feedback

closed-loop transfer function matrix, T(s), becomes:

T(s) = [I + kG(s)]-f kG(s)

= W(s) [I + kAh(s)]- 1 kAg(s)V(s)

= W(s)At(s)V(s) (2.17)

g,(s)k w'" 1'' (2.18)
= 1 + gi(s)k wds)v1 (s)

where W(s) and V(s) are identical to those defined for the open-loop system and

At(s) is a diagonal matrix composed of the closed-loop transfer functions ti(s) =

Sg,(a)k Comparison of the closed-loop decompositions with those of the open-loop
1+g,(a)k"

reveals that they share a common eigenvector direction set but differ in their char-

acteristic transfer functions. However, the special relationship between these charac-

teristic transfer functions permits the exploration of system stability, gain, accuracy,

and interaction as explained next beginning with the application of the generalized

Nyquist stability criterion.
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2.3.1 Nominal stability

The immediacy and convenience of the generalized Nyquist criterion lies in the ge-

ometric interpretation it provides for multivariable stability based on the open-loop

characteristic loci. Application of the generalized Nyquist criterion to the system of

Fig. 2.2 implies that this system is closed-loop stable if and only if the net sum of

counterclockwise encirclements of the "special" critical point [(-1/k) + jO] by the

characteristic loci gi(jw) equals the number of open-loop unstable poles [MacFar-

lane and Postlethwaite, 1977b; MacFarlane and Postlethwaite, 1977a]. Hence, the

open-loop characteristic loci provide an immediate graphical assessment of nominal

closed-loop stability.

2.3.2 Relative stability

As mentioned earlier, the characteristic loci have been shown to be analytic almost

everywhere in the complex plane; therefore, the conformal mapping from the s-plane

to the G(s)-plane establishes a relationship between the proximity of the dominant

closed-loop poles to the imaginary-axis and the proximity of the characteristic loci

to the critical point [Cameron and Kouvaritakis, 1979]. Thus, the characteristic

loci can be employed to assess relative stability in terms of the gain and phase

margins. The gain margin, for example, can be found by determining the "special"

critical point [(-l/k)+jO] which has minimum modulus, yet gives the proper number

of encirclements; the corresponding value of k provides a measure of the system's

gain margin. In addition to enabling nominal and relative stability assessments via

frequency response plots, the characteristic transfer functions also have a character-

istic gain interpretation useful for dividing the frequency spectrum into particular

frequency ranges as will be seen next.
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2.3.3 Characteristic gain

The modulus of the characteristic transfer functions can be used to define characteris-

tic gains which are useful in dividing the frequency spectrum into low, intermediate,

and high frequency ranges. As will be seen subsequently, this frequency division

facilitates the design of frequency dependent characteristic transfer function compen-

sators. The frequency spectrum can be segregated into low, high, and intermediate

frequency ranges according to the following rules:

>> I =low frequency range

Ig9(Jw)l << 1 =I high frequency range (2.19)

otherwise =• intermediate frequency range

In addition to defining these frequency ranges, the characteristic transfer functions

may also be used in assessing accuracy.

2.3.4 Accuracy

It is well known that for scalar systems high controller gain yields good tracking

accuracy; this can easily be related to the multivariable case by considering the

closed-loop dyadic expansion of (2.18). In general, the components of input signal

r(jw) will be projected onto the different characteristic directions and the output

will not resemble the input. This is seen by placing r(jw) at the input of the system

as shown in Fig. 2.2 and writing the closed-loop dyadic expansion for output y(jw):

y(jw) = G(jw)r(jw)
+ g,(ju,)k

.= 1 + gij~ '£~ij~(w (2.20)

Hence, in general y 7 r and the input will not be reproduced at the output.

One way of improving output accuracy is revealed by (2.20). Namely, increasing

the compensator gain, k, has the following effect:

' 1 g1 (jw)k E 1 =j y(jw) • _w,()w)vý(jw)r(jw) = r(jw) (2.21)

1 •• ~ u +ia g1 (iiw-, il= i
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Thus, increasing the compensator gain improves tracking accuracy. However, this

simple solution may conflict with other design objectives such as maintaining system

stability as explained in the subsequent section.

2.3.5 Interaction

In the context of the characteristic locus framework, interaction may be characterized

in terms of:

(1) the magnitude of the characteristic loci; and/or

(2) the misalignment angles between the open-loop characteristic vector
set and the standard basis vector set; and/or

(3) the near equality of the characteristic loci.

Since the plant uncertainty is modelled as an additive perturbation A(s), the prob-

lem of characterizing perturbed interaction becomes one of determining the effect of

the perturbation on the characteristic loci moduli and on the angular misalignment

between the eigenvectors and the standard basis vectors. 2roperty (1) relating to the

moduli of the characteristic loci is generally pertinent in the low frequency range due

to steady state accuracy requirements discussed in the previous section. In contrast,

Property (2) relating to the misalignment angles of the characteristic vectors is gen-

erally pertinent in the high frequency range due to the natural attenuation present

in most physical systems, noise considerations, and compensator gain limitations

imposed by stability requirements. In the intermediate frequency range, both (1)

and (2) can play an important role in assessing multivariable interaction. Property

(3) above will be ignored because it is rather restrictive; due to differences in the

dynamics of the various system loops it is unlikely that gi(s) ; gi(s) for j # i

would form a sensible design objective. Since the present work will be subsequently

concerned with characterizing the worst case uncertainty corresponding to the worst

case (i.e. largest) misalignment angles, the focus here will be on the description of

interaction expressed in terms of the misalignment angles.
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The condition for low interaction in the high frequency range can be expressed

equivalently by the requirement that each eigenvector of the plant G(s) make a

small angle with a different standard basis vector. In order to understand how this

interaction measure arises, consider the condition of no interaction which is met when

the ith input excites the ith output exclusively. This condition is also equivalent to

the condition that ej, the it standard basis vector, be an eigenvector of the closed-

loop transfer function matrix T(s) given by (2.17) and hence by (2.14) an eigenvector

of the open-loop transfer function matrix G(s) also. Although this condition would
guarantee the existence of no interaction at all, a near alignment of the eigenvector,

say wi, with the standard basis vector e, would imply low interaction in the ith

loop of the closed-loop system. A quantitative measure of the degree of alignment

between the two vectors ei and wj at a particular frequency is given by:

C ni ei wj 1 (2.22)cos ~ ~ €,= axje, ljlwjjj

where the angle Oi is termed the misalignment angle. For all but highly interactive

systems, (2.22) associates a unique eigenvector wj to each standard basis vector ei

and it can be assumed that the eigenvectors have been ordered so that ej makes the

smallest misalignment angle with wi.

In the sequel, the concern will be with analyzing how additive uncertainty affects

multivariable interaction as measured by the misalignment angles. It will be seen

that this analysis together with the previous development of the E-Contour method,

can be used to provide a convenient, complete assessment of perturbed interaction

from the characteristic locus perspective. Prior to this, however, the Characteristic

Locus Method will be enumerated below.

f

2.4 Characteristic Locus Method

As stated previously, the Characteristic Locus Method [MacFarlane, 1980] seeks to

extend some of the ideas behind single-loop feedback design such as the Nyquist

stability criterion and the use of simple compensators to achieve desired stab;lity
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margins, steady-state performance, and transient response. The generalized Nyquist

stability criterion has already been shown to depend on the frequency response plots

of the characteristic transfer functions, namely the characteristic loci. It remains

to be seen how simple compensators are designed to achieve various performance

objectives. Basically, this is done using the approximately commutative controller

which enables the manipulation of the characteristic loci as if they were ordinary

Nyquist loci.

2.4.1 Approximately commutative controller

The goal of the approximately commutative5 controller is to shape the characteristic

loci to achieve system stability and meet performance specifications regarding rel-

ative stability, accuracy and interaction [MacFarlane and Kouvaritakis, 1977]. The

manipulation of individual characteristic loci could be easily achieved if a controller

could be designed with the same characteristic direction set (or eigenframe) as the

system. In other words, if the square m x m transfer function matrix, G(s), has

spectral decomposition G(s) = W(s)Ah(s)V(s), then a controller which has spectral

decomposition K(s) = W(s)Ak(s)V(s) can shape the individual characteristic loci

in the following way:

G(s)K(s) = W(s)Ah(s)V(s)W(s)Ak(s)V(s)

= W(s)Ag(s)Ak(S)V(S)

= W(s)Agk(s)V(s)

where Agk(s) = diag{gi(s)k,(s)}. Thus, each scalar controller ki(s) could be de-

signed to shape the corresponding characteristic loci. Although such simple scalar

controllers would be desirable, in practice, the overall structure is difficult to imple-

ment because components of the characteristic direction set matrix W(s) are almost

invariably irrational functions. Moreover, for m > 2, the eigenvectors are not known

explicitly.

5The controller is commutative because both pre and post multiplication of G by the controller
transfer function matrix produce the same result as outlined in the main discussion.
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A practical alternative is to construct a controller whose eigenframe approximates

the system eigenframe at a particular frequency, s,,. Such a controller, called an

approximately commutative controller, is given by:

K(s) = WAk(s)V

; W(so)Ak(s)V(so)

where W • W(so) and f/ ; V(so) are constant, real matrix approximations to

the characteristic direction set and dual characteristic direction set, respectively.

The particular frequency s, is chosen during the design procedure outlined below.

One reason for using the real approximations lies in the simplicity of the resulting

implementation which consists only of amplifier networks devoid of dynamic ele-

ments [Maciejowski, 1989]. The procedure for obtaining the real approximations to

the direction sets is given by the ALIGN algorithm (Kouvaritakis, 1988].

The approximately commutative controller permits control of the system in the

frequency range about s. by approximating the eigenframe of the system at frequency

se,. The equations which govern the open-loop behaviour in this frequency range are

given by:

G(s)K(s) = W(s)A,(s)V(s)WAk(s)V

W(s)Ak(S)V(So)

where use is made of V(s)W "m I. Thus, the individual products of the character-

istic transfer functions g,(s) with the corresponding compensators ki(s) can be used

to shape the loci to meet stability and performance requirements as subsequently

outlined in the CLM design procedure.

2.5 Characteristic locus design

In order to manipulate the characteristic loci to meet the stability, accuracy, and in-

teraction requirements, the Characteristic Locus Method specifies controller design

at each of the three frequency ranges defined by (2.19). Subsequently, the overall
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controller is realized as a combination of the three frequency dependent controllers.

The CLM design procedure is outlined in the steps below [MacFarlane, 1980; Kou-

varitakis, 1988]:

1. High Frequency Range (w > Wh): In the high frequency range,

interaction cannot be reduced with high compensator gain. There-

fore, some form of compensation other than increased gain must be

deployed to reduce interaction. In the high frequency range, the re-

quirement that the kth input excite only the kth output is equivalent

to the requirement that the eigenvectors parallel the standard basis

vectors. This can be accomplished by requiring G(jwh)Kh P D

where Kh is the constant high frequency compensator and D is a

diagonal matrix. Thus, the high frequency compensator is designed

to satisfy:

Ih ;-- DG-1 (jwh) (2.23)

This compensator is given by applying the ALIGN algorithm to find

an approximate real inverse to DG-l(jwh).

2. Intermediate Frequency Range (wI < w < Wh): In the interme-

diate frequency range, the primary concern is with improving the

relative stability margins about the critical point. This is done by

designing an intermediate frequency compensator, Kin(s), as an ap-

proximately commutative controller which operates on the combined

system G(s)Kh. The ALIGN algorithm is used to approximate the

eigenframe of this system in order to apply classical scalar phase

lead or phase lag shaping techniques to the characteristic loci. To

reduce the interference of the intermediate frequency design phase

with that of the previous step, an attempt is made to ensure that

lirnm.,Wh Km(jw) = I. At the completion of this step, the compen-

sated system is G(s)KhK,,(s).
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3. Low Frequency Range (w < wj): In the low frequency range, the

main concern is with steady state accuracy. As noted previously in

the discussion of accuracy, high gains cause the output to accurately

follow the input. To both increase and balance the gains of the

characteristic loci, proportional-plus-integral (PI) action is used in

the low frequency compensator which has the following form:

SK(s) + 1 9-(2.24)s

where a is chosen to control the transition from low to intermediate

frequency. Similar to the previous step, the low frequency compen-

sator is designed as an approximately commutative controller which

operates on the combined system G(s)KhKm(s).

4. Characteristic Locus Controller: The overall characteristic lo-

cus controller is realized as the following combination of previously

designed compensators:

K(s)= KhK,(s) (s-KI(s) + I) (2.25)

Thus, the characteristic locus controller manipulates both the characteristic direc-

tions and transfer functions to achieve stability, reduced interaction, and improved

performance.

2.6 Summary

This chapter has given an overview of the generalized Nyquist/characteristic lo-

cus framework so that the perturbed interaction investigation which follows may

be viewed from this perspective. To achieve this, background material relating

to uncertainty models, perturbed stability conditions, and the E-Contour method

was presented. Finally, a summary of the relevant aspects of the generalized

Nyquist/characteristic locus approach was given with particular emphasis on in-

teraction.



Chapter 3

The minimization of interaction in the

presense of uncertainty and controller

gain limitations

3.1 Introduction

The problem of interaction in linear time-invariant multivariable systems has been

examined extensively from many differing perspectives for quite some time. A de-

scription of the status of noninteracting control prior to 1971 is given in [Morse and

Wonham, 1971] and an analysis of decoupling from a geometric perspective is pre-

sented in [Wonham, 1979]. More recent work has focused on employing state feedback

to achieve decoupling [Descusse et al., 1984; Descusse et al., 1988] while additional

research has examined the simultaneous problem of disturbance rejection by output

feedback and decoupling [Desoer and Nasli Gfindes, 1986; da Silva and Leite, 1992;

Chang and Rhodes, 1975; Fabian and Wonham, 1975]. These latter approaches in

conjunction with others [Horowitz, 1963; Horowitz, 1982] have emphasised a two-

degree-of-freedom design structure in which the feedback compensator is deployed

to stabilize an uncertain system while the prefilter is used to decouple the resulting

stabilized system. Clearly, such approaches are most effective whenever feedback

can be deployed to reduce system uncertainty to such an extent that decoupling can

be achieved through pre-filtering. However, in many practical situations, physical

limitations on the available/permissible amount of feedback gain imply that, at least

over a range of frequencies, open-loop uncertainty will persist in the closed-loop. In

cases like these, the use of a decoupling pre-filter will not necessarily suppress in-

34
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teraction to an acceptable level. The persistence of closed-loop interaction has been

implicitly acknowledged in the design strategy of the Characteristic Locus (General-

ized Nyquist) Method [MacFarlane, 1980; Kouvaritakis and Trimboli, 1989] where,

as seen in the previous chapter, decoupling feedback is deployed in the high frequency

range where gain is necessarily limited.

The main objective of the present chapter is to give an example which demon-

strates that feedback compensation can attain better performance in terms of reduced

interaction when there are compensator gain limitations and the nominal plant is sub-

ject to additive uncertainty. In line with this aim, this chapter seeks to develop only

the means of completing the counter-example rather developing the entire method-

ology. In the particular example given, the decoupling feedback compensator will be

seen to provide greater relative decoupling as compared to a two-degree-of-freedom

structure in which the feedback compensator is designed ;- minimize the closed-loop

uncertainty and the prefilter is designed to minimize interaction. Although two-

degree-of-freedom approaches simplify the design process through the separation of

robustness and decoupling issues, they do so at the potential cost of excessive interac-

tion. The conclusion to be drawn here is that realistic design strategies which address

the simultaneous problems of robust stabilization and decoupling should incorporate

a more general approach in which both the feedback compensator and prefilter are

either simultaneously deployed or deployed over different frequency ranges in order

to achieve the concurrent objectives of robust stabilization and optimal decoupling.

3.2 Preliminaries

The preliminaries of this section pertain to the simple multivariable example con-

sidered in the following section. In particular, the example studied will be a two-

input/two-output system whose values are known at a particular frequency. Since

the present concern is primarily with interaction, it will be assumed that stability

is implicitly ensured by the design process. This assumption is particularly perti-
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nent, for example, when considering generalized Nyquist design techniques which

initially address high frequency interaction and subsequently ensure robust stabil-

ity [Kouvaritakis and Trimboli, 1989]. Additionally, in order to reduce the number

of computations required to optimize the cost functions given below, it will also be

assumed that the plant G(s) at the specified frequency contains only real elements.

The nominal multivariable feedback system of Fig. 3.1 has three associated trans-

fer functions: (1) the sensitivity function S(s), (2) the controller sensitivity function

R(s), and (3) the complementary sensitivity function T(s). The nominal models

r(s) + K(s) G(s) y(s)

Figure 3.1: Nominal multivariable feedback system

are given as:

S = (I+GK)-' (3.1)

R = K(I+GK)-1  (3.2)

T = GK (I + GK)-' (3.3)

When the nominal plant G is subject to additive uncertainty A, the true plant is

represented by G + A as depicted in Fig. 3.2. The perturbed complementary

r + K G±A Y

Figure 3.2: One-degree-of-freedom multivariable system with additive uncertainty
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sensitivity function corresponding to Fig. 3.2 is represented by:

T+T = (G+A)K(I+(G+A)K)-'

= T + S (I -(I + AR)-') (3.4)

where S and R represent the nominal sensitivity and controller sensitivity functions

given by (3.1) and (3.2), respectively. From (3.4), it is clear that contribution of

the additive uncertainty A to the closed-loop complementary sensitivity function is

given by T = S (I -(I + AR)-').

The specific class of additive structured uncertainty D8 considered in the sequel

is characterized as:

AEDs,{ A:IAI-•P= 0 ,0<p (3.5)

where p is a nonnegative real number. Thus, the uncertainty class given by (3.5)

has uncertainty exclusively in the (1, 2) element and for simplicity, all perturbations

within the defined class Ds will be compactly represented as:

A=ele T where b = pe'9  and 0<p•p (3.6)

Moreover, p and 0 are the modulus and phase, respectively, of the uncertainty element

6 and el and e2 are standard basis vectors corresponding to the respective columns

of the 2 x 2 identity matrix.

In the following discussion, it will be useful to define the stabilizing feedback

controller class IC with limited lower and upper gains specified by the following

notation:
/C K: 0 < < tr[K] !5 j [K] !58 (3.7)

where a and 3 represent the lower and upper gain limits, respectively, of the feedback

controller K. Additionally, the notation - [. ] denotes the maximum singular value

of [. ] while g [. ] denotes the minimum singular value of [. ].

For the specific 2 x 2 case, a simple measure of the interaction present in the ith

loop of the perturbed closed-loop transfer function T + ! is given by the following
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measure:

r=maxI (T +P,) 1 1 '1 3 (3.8)

where the subscript ij denotes the corresponding element (i,j) and r denotes the

maximum interaction in either the first or second loop. Hence, r measures the

maximum ratio of the ith column off-diagonal element to the ith column diagonal

element. It is straightforward to rewrite this interaction measure in the following

more compact fashion:

eTE (T + t) ej (3.9)"1= max

i=1,2 eT (T + T) ej

where the subscript associated with rl denotes the one-degree-of-freedom interaction

measure and E is the 2 x 2 identity matrix with reversed columns. Similarly, by

employing a prefilter F as shown in Fig. 3.3, the resulting two-degree-of-freedom

interaction measure becomes:

eTE (T + Fei (3.10)
i2 = max eT (T + t) Fei

where the prefilter F simply post multiplies the perturbed closed-loop transfer func-

tion matrix T + T.

Figure 3.3: Two-degree-of-freedom multivariable system with additive uncertainty

In the two-degree-of-freedom design structure of Fig. 3.3, the feedback compen-

sator K2 which minimizes uncertainty in the perturbed closed-loop system T + T

satisfies the following cost function:

Itf2 := Min max (3.11)
K E XA ED, s [T]

I
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where the controller class KO is defined by (3.7) and the notation "a f (a)" denotes

that "a" is assigned the optimal value defined by the optimization function "f(a)".

The presence of the denominator term 7 [T] in (3.11) precludes the occurrence of the

trivial case K'2 = 0 and for the simple 2 x 2 example to be considered, it is straight-

forward to show that the numerator term 7 [T] satisfies the following relationship:

S= 1 + Ile[ee T2R (3.12)

where 6 denotes the (1,2) element of the perturbation matrix A. Using (3.12), it

is also straightforward to show that the worst case uncertainty which achieves the

maximization in (3.11) lies on the boundary of the class D. and is purely real:

A, ±peleT (3.13)

where the subscript 2 associates this worst case perturbation with the two-degree-

of-freedom controller K2. Hence, referring to (3.6) the worst case uncertainty A,1 2

has maximum modulus (i.e. 161 = p) and either positive or negative sign (i.e. 0 = 0

or 0 = rn). Clearly, this characterization of the worst case uncertainty significantly

reduces the number of computations required to optimize (3.11).

* Further examination of (3.12) reveals that the feedback controller K2 which min-

imizes the uncertainty cost function (3.11) has the following general structure:

K2 = (3.14)

where kT is a 2-element (nonzero) row vector and oT is a 2-element zero row vector.

StHere, it is implicitly assumed that the feedback controller K2 is in the controller

class K10 with lower gain limit a = 0 and upper gain limit / > 0 [c.f. (3.7)]. The

optimal controller structure given by (3.14) becomes apparent by writing the con-

troller sensitivity function as the product R = KS and observing that the second

standard basis vector e2 premultiplies the controller K in the optimization function

numerator term (3.12). Thus, the feedback controller of (3.14) yields • [T" = 0 and

therefore completely removes uncertainty in the feedback loop.
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Given the general compensator structure of (3.14), it is of interest to determine

the optimal pretilter (c.f. Fig. 3.3), designated F2, which minimizes the closed-loop

two-degree-of-freedom interaction measure r2 given by (3.10). By writing the 2 x 2

prefilter as stacked column vectors (i.e. F2 = {f f2]), the closed-loop interaction

measure T2 becomes

T2 = max JeTEGeJ k[1f 1 f 21eij (3.15)i=1,21] eTGelkT if~f]e

Additionally, if the elements of the nominal plant G are denoted by gij, then (3.15)

implies that r2 is given by:

T2 =max -21 ,j-11 1 (3.16)
"r911 gig21

where it is implicitly assumed that gil # 0 and g21 0 0. Clearly, minimal interaction

results when Igll = 1g21 1 and this yields the value of the two-degree-of-freedom

interaction measure 72 = 1. Interestingly, (3.16) implies that interaction depends

entirely on the nominal plant G and is :ompletely independent of the prefilter F 2.

In order to permit the two-degree-of-freedom prefilter to influence the closed-loop

interaction measure, it is necessary to modify the rank deficient controller of (3.14).

Thus, in lieu of attaining minimal closed-loop uncertainty (i.e. [T1 = 0), the op-

timization (3.11) must consider the class of stabilizing controllers VC where the

controllers considered are constrained to have a lower gain limit a which satisfies

0<a<3.

Upon determining the two-degree-of-freedom feedback compensator K2 which

minimizes closed-loop uncertainty according to (3.11) with a : 0, the optimal de-

coupling prefilter F2 is chosen to satisfy:

F2 := min r2 (3.17)F

where r2 is given by (3.10).

In contrast to the two-degree-of-freedom optimizations presented above, the opti-

mal decoupling one-degree-of-freedom feedback compensator designated K1 satisfies

the following optimization:

K, := min r1  (3.18)
K EX."
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where 7-1 is given by (3.9) and )CO represents the feedback controller class defined

by (3.7). In general, the optimal decoupling controller is not constrained to have

some lower gain limit a # 0 as was the case in the two-degree-of-freedom structure,

therefore we may take a 0.

This discussion of the assumptions, optimization functions, constraints, and un-

certainty and controller classes enables the study of the simple example presented in

the next section. This example demonstrates the main point of this chapter, namely

that interaction is not always optimally dealt with by a decoupling prefilter after the

minimization of closed-loop uncertainty.

3.3 Example

Consider the 2 x 2 nominal plant model G whose matrix value at a specific frequency

w is given by:

G ( -0.7000 -0.0500

G 0.1000 0.1000

and which is subject to an additive structured uncertainty A within the structured

uncertainty class Ds defined by (3.6) in which 'bl < 0.1. It should be noted that

both G and A have been arbitrarily chosen for this example. From the analysis of

the previous section, it is known that the worst case uncertainty which maximizes

the closed-loop uncertainty is given by A,,, = ±-0.1ele T. Additionally, the con-

troller class ICO will be assumed to have a lower gain limit given by a = 0.1 and

an upper gain limit given by/• = 1. It is possible to parameterize the controllers

and pre-filter in terms of their respective singular value decompositions and perform

an exhaustive search over the parameterizations; this simple optimization technique

will be employed to solve each optimization problem.

Exhaustively searching over the parameterization of feedback compensators to

minimize the closed-loop uncertainty in accordance with (3.11) yields the following

nanmmnnnlmmnamnmn • i • II""--• lln h= m m u •t•,=,,.,,I
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optimal "two-degree-of-freedom-feedback-compensator":

0.1324 -0.9889

0.0905 0.0795

This feedback compensator gives the optimal worst case value of uncertainty reduc-

tion [t] 1/- [T2] = 0.0131 and clearly, K2 has done well by way of reducing the

closed-loop uncertainty. In addition, the controller K2 is on the boundary of the
controller class CK. since a [K2] = 0.1 and 7 [K2] = 1. Interestingly, the uncertainty

value U [T2N 1 [T2 1] is independent of the sign of the uncertainty +o.l1e2e.

By employing the optimal uncertainty reducing controller K 2 and exhaustively

searching over the parametrization of prefilters to minimize the two-degree-of-freedom

interaction measure r2 defined by (3.10), the following optimal decoupling prefilter

is obtained:

S0.3080 
-0.4510

0.9240 -0.0678

Using the prefilter F2 in conjunction with the controller K2 yields the following value

of the two-degree-of-freedom interaction measure:

T2 = 1.2112 (3.19)

As with ' [V2J /' [T21], the optimal value of r 2 is independent of the sign of the

uncertainty ±0.leIeT.

In comparison, by exhaustively searching over the parametrization of feedback

compensators to minimize the one-degree-of-freedom interaction measure T1 defined

by (3.9), the following optimal compensator was found:

K -0.9968 0.0525

-0.0795 -0.6514

The corresponding value of closed-loop interaction is given by:

!rl = 0.6363 (3.20)

and analogous to the previous two-degree-of-freedom results, the interaction measure

rl (based on the optimal decoupling controller K 1) is independent of the sign of
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±0.1ele". By way of uncertainty reduction, the controller K, yielded the value

W [T1 j /7 [T1] = 0.0999; however, K 1 was chosen to optimize perturbed decoupling

rather than uncertainty reduction. In order to confirm the decoupling optimality

of K 1 , the range of prefilters was scanned to minimize the two-degree-of-freedom

interaction measure T2 defined by (3.10) but with K 1 used in place of K 2 . Not

surprisingly, the optimal decoupling prefilter F1 paired with the optimal decoupling

compensator K 1 turns out to be the identity matrix (i.e. F1 = I) and this further

confirms that interaction has been optimized by the feedback compensator K 1 .

Comparison of the interaction measures rT = 0.6363 and r2 = 1.2112 given

in (3.20) and (3.19), respectively, clearly demonstrates the improved decoupling per-

formance afforded by the one-degree-of-freedom compensator K 1 .

3.4 Summary

This chapter has demonstrated, by way of example, that controller gain limitations in

conjunction with plant uncertainty may require optimal decoupling through feedback

compensation rather than through a decoupling prefilter. Although two-degree-of-

freedom approaches simplify the design process through the separation of robustness

and decoupling issues, they do so at the potential cost of excessive interaction over

the range of frequencies in which feedback gain is necessarily limited. Under these

situations, feedback compensation may not sufficiently reduce the effects of uncer-

tainty to enable optimal pre-filtering; therefore, in such cases, decoupling feedback

must be deployed over the appropriate frequency range.



Chapter 4

Uncertainty and interaction in linear

multivariable feedback systems

4.1 Introduction

One of the main objectives in feedback control design is to minimize the effects of

uncertainty in system dynamics. It is not surprising therefore that, over the last two

decades, much research effort has been directed in this area with a particular concern

for the multivariable case. As a result there are now a wealth of results relating to

multivariable stability and tolerance to uncertainty, accuracy of tracking, disturbance

rejection, etc.; however, one aspect of multivariable behaviour that appears to have

been overlooked is interaction. In the context of the characteristic locus framework

(c.f. Section 2.3.5), interaction is characterized in terms of:

(1) the moduli of the characteristic loci; and/or

(2) the misalignment angles between the open-loop characteristic vector
set and the standard basis vector set.

Naturally, an assessment of interaction is of no use in situations where feedback can

be deployed to reduce plant uncertainty to such an extent that decoupling can be

accomplished via pre-filtering. However, as demonstrated in the previous chapter,

limitations on the available/permissible amount of compensator gain imply that, at

least over a range of frequencies, open-loop uncertainty will persist in the closed-

loop. In such cases, the use of a decoupling pre-filter will not necessarily result in

a non-interactive system and, as a consequence, it is useful to have the capability

of evaluating closed-loop interaction in terms of open-loop parameters, particularly

44
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with regard to the effects of uncertainty. For the case where the plant uncertainty

is modelled as an additive perturbation A(s) on a nominal transfer function matrix

G(s), the problem of assessing interaction becomes one of determining the effect of

A(s) on the moduli of the eigenvalues of G(s)+A(s) and on the angular displacement

of the eigenvectors of G(s) + A(s) with respect to the standard basis vectors. For the

structured uncertainty class D [c.f. (2.4)] considered in the present investigation,

the E-Contour method based on the MPDA property [c.f. (2.12)] can be deployed to

determine upper and lower bounds on the perturbed eigenvalue moduli and, there-

fore, contribute to an assessment of interaction in terms of (1) above. Unfortunately,

the E-Contour method provides no tangible information on the effects of uncertainty

on eigenvector/ standard basis vector misalignment; hence, this work seeks to bridge

this gap by enabling an assessment of perturbed interaction in terms of (2) above.

It will be shown that by considering the appropriate stationary conditions, the

perturbation which maximizes interaction in terms of eigenvector misalignment,

hereafter referred to as the worst case perturbation, lies on the boundary of the

structured uncertainty class D8 (i.e. each element ,ij of A has maximum modulus).

Furthermore, the stationary conditions will be shown to enable the further charac-

terization of the worst case perturbation phase structure in terms of diagonal phase

matrices which pre- and post-multiply the uncertainty class boundary matrix. This

enables the development of a simple and efficient algorithm for the determination

of the worst and best case perturbed interaction as measured by the maximum and

minimum values of the misalignment angles, respectively, at a set of preselected fre-

quencies. This information together with the modulus information derived from the

E-Contours can be deployed to supplement the nominal plots of eigenvalue-moduli

and misalignment angles versus frequency with plots of bands of possible eigenvalue-

moduli and possible angles versus frequency. The resulting plots provide a convenient

means of assessing interaction in the presence of uncertainty. The strength of this

approach is its convenience: it relates closed-loop interaction to simple open-loop

attributes. The overall interaction assessment can be supplemented further with
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upper bounds on interaction [Kouvaritakis and Trimboli, 1988]. In this case, an

appropriate modification of the algorithm presented will yield interaction bounds

which take full account of model uncertainty and still enable one to relate closed-

loop interaction to simple open-loop geometric properties. The results are illustrated

by means of a numerical example and a study carried out on the model of an open-

loop unstable chemical reactor. Throughout this discussion, the assumption will be

made that the eigenvalues of the uncertain transfer function G(s) + A(s), evaluated

at any frequency, if repeated will be simple. This assumption does constitute a
limitation to the approach because non-simple eigenvalues can only occur when the

corresponding eigenvectors become pa.allel. In such a case however, interaction will

be excessive and a precise quantification of interaction would be of little practical

use.

4.2 Background

The two open-loop attributes listed in the previous section which characterize closed-

loop interaction are also useful in specifying the corresponding conditions under

which the closed-loop system of Fig. 4.1 will exhibit low closed-loop interaction;

r(s) +K(s)] G(s) + A(s) y(S)

Figure 4.1: Multivariable system with additive perturbation

these are:

(i) the moduli of the eigenvalues of G(s) is large; and/or

(ii) each eigenvector of G(s) makes a small angle with a different standard basis
vector.
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The physical reasons underlying these conditions can be explained in terms of the

characteristic locus framework.

Recall from Chapter 2 that the open-loop transfer function matrix G(s) has an

associated algebraic function g(s) defined by (2.13). Moreover, everywhere, except at

its branch points, the algebraic function g(s) has m distinct characteristic transfer

functions1 (or branches), gi(s), each having an associated distinct right and dual
left-eigenvector w2(s) and v'(s) with the following properties [c.f. (2.16)]:

G(s)wj(s) = g,(s)wi(s) v'(s)G(s) = gi(s)v'(s) v'(s)wi(s) = 1 (4.1)

These properties, in turn, define the dyadic decompositions of the open- and closed-

loop transfer function matrices G(s) and T(s) given by (2.15) and (2.18), respectively,

which at any given frequency become:

m m
G = giwivv and T g, v, (4.2)

+1 g,

From (4.1) and (4.2) it is easy to understand how condition (i) above yields the

following low closed-loop interaction result:

if Igi9,> I Vi then T I

Thus, large eigenvalue moduli yield low closed-loop interaction.

The physical reasoning underlying low closed-loop interaction condition (ii) above

was explained in Section 2.3.5 where it was observed that the condition of no inter-

action requires that the ith standard basis vector ej be an eigenvector wi of both the

open- and closed-loop transfer function matrices G and T as given by (4.2). Con-

sequently, a quantification of closed-loop interaction is given by the misalignment

angle, q5,, which measures the angular difference between ej and wj as:

cos = max ieiwwi (4.3)

Additionally, for all but highly interactive systems, (4.3) associates a unique eigen-

vector wj to each standard basis vector e,; henceforth for convenience it will be

m is the number of plant inputs and outputs.
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assumed that the eigenvectors have been ordered so that ei makes the smallest mis-

alignment angle with wi. This pairing of ei to a unique wi will be unambiguous

unless Oi > 450 for some i, when more than one pairing may be possible. But

clearly in such a case (i.e. when Oi > 45') the Ith loop will be expected to be highly

interactive and a measure of the amount of interaction present would not convey any

useful information.

Due to steady state accuracy requirements, the characteristic gains of the open-

loop system (after compensation) must be made large, thus at low frequencies, con-

dition (i) relating to the eigenvalue moduli will be pertinent in the assessment of

closed-loop interaction. Conversely at high frequencies, due to the natural atten-

uation present in most physical systems, constraints on control input levels, noise

considerations as well possible conflicts with the requirement for stability, condition

(i) will not apply and condition (ii) pertaining to the eigenvector misalignment will

be applicable. At the cross over from low to high frequencies (namely at intermediate

frequencies) both conditions (i) and (ii) can play an important role in the assessment

of interaction.

A convenient way to combine and present the information relevant to conditions

(i) and (ii) is to plot, for each eigenvector wi, the eigenvalue modulus Igil versus

frequency w and the misalignment angle Oi again versus frequency w. As explained

earlier, these plots may be supplemented by plots of upper bounds on interaction in

terms of the open-loop eigen-properties of the transfer function matrix [Kouvaritakis

and Trimboli, 1988]. In particular, if the reference signal r of Fig. 4.1 is in the

direction of the ith standard basis vector ei, then the reference signal may be written

as r(jw) = ro(jw)ei, where ro(jw) is a scalar function of frequency w; for convenience

in the sequel the argument (jw) shall be dropped. If y denotes the corresponding

output, then the quantity IlY - (e~y)ejIj gives an exact measure of interaction at a

particular frequency w, which can be shown to be bounded from above as:

Ily - (e y)ejI < U1 < U2  (4.4)
froJ - -

- • n • • I...........
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with

U1 = JW4ll max Itj - tlllVeill and U2 = Ki(W) max ltj - tjI sin(O,) (4.5)

where W and V are the matrices of right- and left-eigenvectors, wi and vz, Wi is

W with its ith column stricken; Vi is V with its ith row stricken; ti is the ith closed-

loop eigenvalue defined by ti = _2.; and Ki(W) is the partial spectral conditionl+g.

number of the eigenvector matrix defined as Ki(W))tllWill11Vill. Clearly, excepting

the 2 x 2 case when U, = U2, U1 gives a tighter bound on interaction. However, U2

has a simpler geometric interpretation and is more closely related to the qualitative

approach discussed earlier in the section. In particular, it provides further (quantita-

tive) justification for the low interaction conditions (i) and (ii) listed earlier: under

condition (i) the open-loop eigenvalue moduli are large (i.e. Igil > 1) so that the

closed-loop eigenvalue moduli are approximately unity (i.e. Itil = 1 + O(1/Igil)) from

which the maximum value of Jtj - ti is of order O(1/IgI); under condition (ii) the

misalignment angle Oi is small thus leading to a small value of sin(oi) and therefore

a small value of U2 in (4.5). Thus, providing that the eigenvector matrix W is not

ill-conditioned (it is noted that K,(W) < If wlvII Vjj), the plots of eigenvalue-moduli

lgil and misalignment angles Oi versus frequency provide a sensible graphical means

of assessing interaction. These can be enhanced by a third plot, namely that of the

partial condition number A2i(W) versus frequency, in order to account for eigenvector

conditioning. For a purely quantitative assessment one can revert to a plot of U1

or U2 against frequency. Uncertainty in the model transfer function G will affect

the plots of lg;I, O, and ACQ(W), and it is the present endeavour to derive suitable

algorithms for the computation of upper (and lower) bounds on these quantities

and Section 4.3 initiates this work with a study of the effect of uncertainty on the

eigenvector misalignment angles. Subsequently, algorithms for the computation of

worst case and best case bounds on logl, KJi(W), and U2 are considered briefly in

Section 4.4.
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4.3 Misalignment angles in the presence of addi-

tive perturbations

4.3.1 The uncertainty class

Recall from the discussion in Section 2.2.1 that uncertainty arises from many sources

such as imprecise knowledge of physical parameters (e.g. masses, friction coefficients,

etc.) or errors during a model identification stage (such as would be caused by the

presence of measurement noise and/or unmodelled dynamics). In such cases, the

transfer function matrix G(s) can only be thought of as a nominal description of the

plant dynamics and a more realistic representation of the plant dynamics is given

by:

G(s) = G(s) + A(s) (4.6)

where the additive perturbation A(s) is introduced in an attempt to account for

the model uncertainty. Using physical arguments (concerning the possible range of

parameter values) or invoking some reasonable assumptions concerning the identifica-

tion process (for example that the measurement noise is either normally distributed or

is bounded) it is possible to stipulate element-by-element bounds on the uncertainty

A(jw):

IAT8(iw)I < p7 8(jw) Vw (4.7)

where A,.(jw) denotes any complex-valued (r, s) element of A(jw) and p,,(jw) de-

notes the corresponding nonnegative real function which bounds the element mod-

ulus. Thus, the implied class of possible perturbations considered here lies within

the structured class of uncertainty D, defined by (2.4). The problem of assessing

perturbed interaction now becomes one of determining the effect of the perturbation

A(jw) on the misalignment angles Oi of (4.3); clearly the perturbed eigenvectors

*i and the perturbed misalignment angles 4, being considered are those relating to

the perturbed plant O(s) (rather than the nominal plant G(s)) and to emphasize

the distinction between nominal and perturbed quantities, tildes have been added.
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Hereon, the primary interest will be in determining the maximum and minimum

values that the perturbed misalignment angles Oj attain over the structured class of

uncertainty D..

4.3.2 The stationary conditions

At any given frequency w, let each (r, s) element of the perturbation A be represented

as

bra, = Prs exp(j0U) for 0 < Pro <_ Pr, and 0 < Or, < 2r (4.8)

where Prs is the maximum modulus which 4r8 can assume. Clearly, the perturbed

transfer function matrix G as well as its eigenvalues 4, and eigenvectors *i will be

functions of both the perturbation modulus Pr8 and phase 0Or. Furthermore, unless

0 has a non-simple Jordan form (i.e. G is not diagonalizable), both gi and *4 will

both be differentiable with respect to Pr, and Or. Non-simple Jordan forms are of no

interest presently since these arise when two or more eigenvectors become parallel;

this can only happen for qi > 450 (for some i) when the system under consideration

is highly interactive and, as mentioned earlier, an exact measure of interaction is of

no practical value in such a case. Thus, the derivative of the perturbed eigenvector

wi with respect to the perturbation element radius Pro and the phase 0,, can be

assumed to be well defined and, hence, it is reasonable at this stage to look for the

stationary conditions of the misalignment angles 4i with a view to determining the

maximum and minimum values over the set of A E D,.

For notational convenience §,, *i, and ei will be denoted by 4, ,, and e respec-

tively. Using this notation and under the assumption that the perturbed eigenvectors

have been scaled such that:

el*- (4.9)

the perturbed misalignment angle definition reduces to:

cos(I) (4.10)
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This in turn implies that the maxima and minima of € are given by the maxima and

minima, respectively, of

11*112 = f** (4.11)

where ( )* denotes transposition and complex conjugation. Letting ( )' denote

differentiation with respect to x, where x can be either p,, or 0,, then differentiation

of the perturbed transfer function matrix G may be written as:

= exp(iOr.)ere t  for x = Pra (4.12a)

&' = jpr. exp(jO~4)ere8 t for x = r (4.12b)

On the other hand, the perturbed eigenvector norm-squared derivative is given by:

(11*112)' = 2Real {**'} (4.13)

so that in order to find the stationary points of the perturbed misalignment angle 4,

it is necessary to differentiate the perturbed eigenvector ft with respect to x. This

can be accomplished by differentiating the eigenvalue/eigenvector defining equation

in order to obtain:

Of* + Gi' = g'* + w*' (4.14)

from which it follows that:

+ G*' = W'* + 1' (4.15)

or

(ýI- A,)V,.f' = 4G'* (4.16)

where • is the left-eigenvector matrix whose rows are the left eigenvectors -• for all

Sj # i, and where Ai is the corresponding diagonal eigenvalue matrix formed from

the eigenvalues 4j for all j # i. In deriving the above, the following facts have been

used:

1G = AV• and V*i = 0 (4.17)
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Projection of the perturbed eigenvector derivative V onto its eigenvector basis set

yields:

V w= i + (4.18)

where Wi is the right eigenvector matrix whose column vectors are the right eigenvec-

tors *j for all j = i (taken in the same order as in Vi and Ai), a is a complex vector

in Cm-1 and 1 is a complex scalar in C. In order to solve for at, substitute (4.18)

into (4.16) to obtain:

C, = (•I - hi) i' (4.19)

from which:

V = MG'* + /3* with M i Wo(I - A,)-1 V (4.20)

In order to solve for /, observe that eigenvector scaling constraint (4.9) implies that:

e t *f' = 0 (4.21)

and this, together with (4.20) (and constraint (4.9)) gives the desired final expression

for the eigenvector derivative:

*'= MG'* - (e'Md'*)* (4.22)

This enables the following statement of the stationary conditions of the perturbed

misalignment angle, 4:

Theorem 4.1 (Misalignment angle stationary conditions)

Under the assumption that the spectral decomposition of G has a simple Jordan form

and with the definitions given above, the stationary conditions for the misalignment

angle of perturbed eigenvector * and its corresponding standard basis vector e are

given as:

Real {exp(jO,,) [f*Mee,'* - (e'Me,e,'t*)f ]} = 0 wrt p,. (4.23a)

Real {j exp(jO,,) [*Meve.' - (e'Meeo'*)fv] }= 0 wrt 0,. (4.23b)
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Proof: This follows directly from (4.12a), (4.12b), (4.13), and (4.22) when the

derivatives of the perturbed eigenvector norm-squared 11*112 with respect to pr, and

0,, are set equal to zero. U

Corollary 4.1 (Worst case perturbation on the boundary of the class D,)

The maximum perturbed misalignment angle 4 over A E D. does not occur at a

stationary point and is hence achieved on the boundary of the structured uncertainty

class D5 .

Proof: Perturbed misalignment angle maxima over the class of perturbations A E

D. must concurrently satisfy both (4.2 3 a) and (4.23b) and thus must satisfy:

[**Mere,'e - (e'Mere,'a*)***] = 0 (4.24)

for all r and s, namely:

**Af - e tM**-v = 0t (4.25)

In the above, the obvious assumption that e t* : 0 for at least one s has been made.

Now, given the structure of M as defined by (4.20) this last condition implies:

fv -- f,*ivt = o-;t (4.26)

where a is some complex constant. Post-multiplication of (4.26) by * and use of the

duality condition It* - 1 together with the eigenvector scaling constraint of (4.9)

imply that either of the following must hold:

o=0 or w=e (4.27)

which can only arise when 4 = 0, and this clearly cannot be a maximum. U

An obvious consequence of this proof is the following corollary:

Corollary 4.2 (Misalignment angle extrema on the boundary of D.)

If the misalignment angle is nonzero (i.e. ý > 0) for all possible perturbations in

the class A E D, then both the maximum and minimum values of the misalignment

angle 4 will be attained on the boundary of the uncertainty class D.
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4.3.3 The structure of the worst case perturbation Aze

The degrees of freedom available in the representation of the structured uncertainty

A E D8 defined by (4.8) are far too many to permit an efficient application of a max-

imization algorithm, even for the simple 2 x 2 case. Clearly, additional information

concerning the structure of the worst case perturbation A,, would be very useful.

As a first step in this direction consider the following re-statement of Corollary 4.1:

Lemma 4.1 (Characterization of the worst case perturbation moduli)

The worst case perturbation A E D. which maximizes the eigenvector misalignment

angle 0 is comprised of elements which assume their maximum modulus:

6r= prsexp(jO,,) V r,s and 0 < 0 < 2r (4.28)

where p., are the upper bounds defining the uncertainty class D% (as per (4.7)).

Proof: The perturbation A of the lemma simply gives a characterization of all

elements on the boundary of the uncertainty class D,. U

With each perturbation element modulus pr. being replaced by its upper bound

prs, the only remaining degrees of freedom in the worst case perturbation charac-

terization are the element-by-element phase angles 0Or. But even so, the number

of variables involved is still too large (e.g. four angles even for the simple 2 x 2

case) to enable the development of a practicable maximization algorithm. With this

objective in mind, the following result reduces the number of angles which must be

scanned by giving a simplified characterization of the worst (best) case perturbation

A which maximizes (minimizes) the eigenvector misalignment angle.

Lemma 4.2 (Phase conditions for the worst case and best case perturba-

tion)

Let Vp, and 0, be defined as

W= phase {(*,- @@*e*) Me,} 1bo. phase {e' } (4.29)
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then the stationary condition with respect to the structured perturbation of Lemma 4.1

is:

Ora + Wo, + Vs Tr,,r (4.30)

with Tr, being either 0 or 1.

Proof: Of the two stationary conditions of Theorem 4.1 only (4.23b) applies on

the boundary of the structured uncertainty class D. and with the definitions of the

lemma this condition becomes:

Real {j exp(jOr,)Pr exp(jpOr)a, exp(j0.)} = 0 (4.31)

where p, and a, denote the magnitudes corresponding to the phase arguments

of (4.29). Since (4.31) is a direct consequence of (4.23b), the result of the lemma

holds. U

Theorem 4.2 (Structure of the worst case and best case perturbation)

The worst case perturbation AWC for which the misalignment angle 4 attains a max-

imum over the structured uncertainty class D. is characterized by Lemma 4.1 with

r,, = 0 and has the following general structure:

AU,,, = 4WPD(4.32)

where $D and %V are diagonal phase matrices defined by:

S= diag {exp (-jo,.)} and T = diag {exp (-jO)} (4.33)

Additionally, the diagonal phase elements V,. and V,, are defined by (4.29) and P is

the boundary matrix comprised of the nonnegative element bounds pr. which define

the structured uncertainty class D.. Furthermore, for a nonzero misalignment angle

4 > 0 over all possible perturbations in the class D., the best case perturbation Ab, for

which the misalignment angle € attains a minimum will have the structure of (4.32)

with the sign reversed:

Ab= -AWC (4.34)
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Proof: For a fixed nonzero perturbation modulus Pta, the maximizing (i.e. worst

case) perturbation phase 0,. is defined by the following stationary condition:

=0 (4.35)

where it is assumed for the moment that the perturbation elements bij are fixed

for all i $ r and j : s. Equation (4.35) implies a functional dependence of the

maximizing perturbation phase 0,., on the perturbation modulus p,, which may be

expressed as:

J,, = f0.,(p,) (4.36)

and so the function fr. defines the locus of misalignment angle maxima as the pertur-

bation element modulus p,., varies. Now clearly the maximum misalignment angle

Sdefined by (4.35) will be monotonically increasing as the perturbation element

modulus pr, increases, and so the slope of the misalignment angle ý versus the

perturbation element modulus pr, is positive:

po > 0 (4.37)

In general, the derivative of the misalignment angle ý with respect to the perturba-

tion element modulus Pr is given by:

d. =9 0..0.+ do (4.38)
dprs =fpr, 0+.rT dpr.

and this, on the locus of the misalignment angle maxima, by (4.35) becomes:

dqs- _ 0r(4.39)

However, by the positive slope condition given by (4.37), (4.39) further implies that

at the misalignment angle maximum, the partial derivative of the misalignment angle

Swith respect to the perturbation element modulus Pr, is given by:

-00 > 0 (4.40)

Using this partial derivative condition in conjunction with (4.23a) yields:

Real {exp(jO,) [*'Me,e,'* - (e'Me,e.'*)*)*] } > 0
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which, with the notation of Lemma 4.2, reduces to

Real {exp(j9,5 )pu exp(jr,.)lao exp(jiO)} > 0 (4.41)

This taken together with (4.30) gives the worst case perturbation structure given

in (4.32). The proof of the best case perturbation structure is similar and therefore

omitted. U

4.3.4 Numerical solution and illustrative example

Algorithms

Theorem 4.2 gives a complete description of the worst case perturbation and thus

could form the basis of a numerical algorithm for the determination of the maximum

misalignment angle q over the structured uncertainty class Ds. It must be pointed

out however that the set of equations to be solved, namely (4.30) with r, = 0, is both

non-linear and implicitly so because of the dependence of (P, and 0, on 00. Clearly

therefore, a closed-form solution is not available and a numerical algorithm (say a

Newton-Raphson type of algorithm) can be deployed. Alternatively on account of

the explicit knowledge of the derivatives of 0 with respect to 0er, the problem of

maximizing the misalignment angle 0 could be solved by any of the efficient gradient

methods (say the conjugate gradient optimization method [Golub and Van Loan,

1983]). Of course on account of the (m - 1)2 constraints implied by (4.30) the

number of variables involved in the maximization is not m2 (the number of elements

in A) but rather m 2 - (M- 1)2 = 2m - 1. In order to see this rewrite (4.30) in vector

form as:

02 = L0 1  (4.42)

where 01 contains 2m - 1 and 02 contains the remaining (m - 1)2 of the phases of

elements of A; L is an (m - 1)2 x (2m - 1) matrix whose elements are 0, or 1 or -1.

Clearly, the misalignment angle € need be maximized only over 01 and the relevant

vector of derivatives will be given by:

V(O) = V9,(0) + LVe2(0) (4.43)
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where V0,( ) and V02( • ) denote partial differentiation with respect to the elements

of 01 and 02 respectively.

The 2 x 2 case

By way of illustration consider next the 2 x 2 case for which (4.30) assumes a par-

ticularly simple form.

Theorem 4.3 (Worst case perturbation for the 2 x 2 case )

For the 2 x 2 case the angles sor and 0, of Lemma 4.2 assume the form:

V1 = - - r; V2 = - 0- ; 01 = 0; 02 = (4.44)

where

a = phase {4, - 921; /3 = phase {e2*} (4.45)

and hence he worst case perturbation assumes the form:

(= expUj) -P2 l -p12 exp(-j 3 ) (4.46)

( P21exp(jUi) P22 /

Proof: This follows by expressing the elements of the vectors (** - *ivet)Mer

and est er of Lemma 4.2 in terms of the eigenvalues and eigenvectors of G which, for

the 2 x 2 case, can be derived explicitly in terms of the elements of G. U

It is interesting to note that AWC above has becn characterized in terms of only

two angles which is one less than the 2m - 1 = 3 degrees of freedom that would have

been predicted from the discussion above. The reason for this is that the phases V,

and 0, are constrained by the relationship:

(fv* - v*fet)Mfv = 0 (4.47)

which for the 2 x 2 case implies that

(P +01 =V2 + 02 -r "(4.48)
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[In the general m x m case the phase constraint given by (4.47) does not lead to a

simple equation for V, and V, and has thus been ignored]. Now to obtain numeri-

cal solutions one could solve the simple but nevertheless non-linear equations given

in (4.44) and (4.45), or alternatively one could use a conjugate gradient algorithm

based on the derivatives of €, which for the special structure of A,, given in (4.46)
reduces to:

do 2
d~b 2 Imag {1*MArc@ - etMA - ,,**-}

do 2 Imag {it*MAo* - etMAo**-*}

II*112II2 1 -4

dfl~~l•l~l -4

where

0 P1 eX(-j1 8)
= exp(ja) pl2 exp (4.49)

P(1 expU(jQ) 0
Alternatively, due to the very small number of degrees of freedom, namely 2, an

exhaustive search type of algorithm is perfectly feasible and this is the method chosen

in the illustrative example below.

A numerical example

Consider a system transfer function matrix which at a specific frequency is given by:

(4.00 + j6.41 -1.62 - jl.35'/
G 0.923 + j2.83 -2.90 + j5.28)

with corresponding spectral decomposition:

G = WAV=( I 0.23+j0.18 '(4.3-15.6 0 '\(0.95+10.11 -0.20-jO.19

0.14+j0.39 1 0 -3.2+16.2 k -0.09-j0.39 0.95+40.11 1
Direct calculation of the nominal misalignment angles yields:

01 = cos-( = 22.50 (4.50)
1 + 10.14 + jO.3912

02 = COS-1 12 16.30 (4.51)
V1 ~+j10.23+i181
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Given an additive structured perturbation A E D, whose corresponding elements

are bounded in modulus by:
(0.483 1.100) (4.52)

A 1.840 0.881

it is of interest to examine the corresponding impact on the misalignment angles of

the system. Equation (4.46) gives the phase constraints which yields the maximum

misalignment angle. Scanning over the possible values of a and /3 yields the worst

case perturbation A,, (corresponding to the first misalignment angle) as:

(w, -0.452 + J6.170 -0.1771- jl.09 _ (0. -0.483 -1.10e'j6O8

1.40 + jl.20 0.827 - jO.304 ( 1.84ejs 8  0.881

This was produced with a = -20.2' and 3 = 60.80. The misalignment angles

resulting from this perturbation are:

=, = 42.8' €2 = 16.28' (4.53)

Comparison of (4.50) and (4.51) with (4.53) demonstrates bow the phase orientations

of the worst case perturbation dramatically increase the misalignment angle under

consideration.

4.4 The overall assessment of perturbed interac-

tion

To complete the assessment of interaction, it is necessary to evaluate how the uncer-

tainty affects the eigenvalue moduli Igil, the partial condition number KJ(IV), and

the interaction bound U2. Each of these are considered in turn below.

4.4.1 Uncertainty and the modulus condition Igil

Eigenvalues are notorious for their sensitivity to perturbations and, as a result,

the plots of the nominal eigenvalue moduli Igil may not convey accurate informa-

tion. This problem can be overcome by employing the E-Contour method (c.f. Sec-

tion 2.2.3) since E-Contours define tight perturbed eigenvalue inclusion regions and
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hence, provide a convenient means of determining non-conservative upper and lower

bounds for the moduli of the perturbed eigenvalues j4.l- Thus, this information can

be superimposed on the plots of the moduli of the nominal eigenvalues Igil to assess

the effects of uncertainty on the eigenvalue modulus condition.

4.4.2 Uncertainty and the partial condition number 2iQ(W)

Once again it is of interest to establish upper and lower bounds on the partial condi-

tion number Kj(W) with the intention of superimposing these on the nominal plots

of ki(W). As was the case with the misalignment angles, the maximum of Ki(W)

does not occur at a stationary point and hence it is achieved on the boundary of the

perturbation class. This assertion can be explained by the ensuing simple arguments.

The values of Ki(W) range from 1 (when the set *'' V j # i, is orthonormal) to oc,

(when two or more eigenvectors, *j, *,k for j, k # i, become parallel). Now by

assumption, the eigenvalues gi and hence the eigenvectors wi are analytic functions

of the elements of the perturbation A; the possibility of the eigenvalues gi becoming

repeated and non-simple has been precluded. Hence WV**k, viewed as a function

of 6,,, a single element of A, is analytic over the disc defined by 16,.,I < pPr, and

so attains both its maximum and minimum modulus on the boundary, namely the

circle 6b,, I = P,. However the modulus of fV**k is precisely equal to the cosine of the

angle between *j and *k, and so KiW) attains its maximum and minimum values

on the boundary of b,,, and hence on the boundary of the uncertainty class D,. The

problem of determining the maximum and minimum of KQ(W) over D8 therefore

reduces to an optimization problem over the perturbation angles 0,,; as with the

algorithm for the worst (and best) case misalignment angles, here also it is easy

to compute the gradient of Ki(W) with respecL to the 0,, and so it is possible to

implement an efficient steepest descent algorithm; however, the detailed procedure

will not be given here. It is pointed out that for the 2 x 2 case, ACi(WV) reduces to

II1V'II for j # i and, in parallel with the misalignment angle analysis of Section 4.3.4,

it is possible to determine the structure of the worst (and best) case perturbation.
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4.4.3 Uncertainty and the bound U2

The plots of the misalignment angles, together with the eigenvalue moduli and par-

tial condition number plots convey all the necessary information for a graphical

assessment of interaction. However if one were interested in a strictly quantitative

assessment, then worst- and best-case upper bounds on U2 could be sought. By

definition U2 = Cj(W) maxj )Ii - ij sin(ýj) [c.f. (4.5)], and so far it has been es-

tablished that algorithms can be generated to quantify the dependence of both the

partial condition number /Ci(WV) and the misalignment angle €j (and hence sin(4i))

on the perturbation A. All that is needed is a corresponding algorithm to find the

largest distance between any two closed-loop eigenvalues, i.e. maxj Iii - ijj. But,

providing that the E-Contours (and the eigenvalue regions defined by them) avoid

the point - I + jO (a necessary condition for stability), then maxj Iii - 1j also attains

its maximum and minimum on the boundary of the uncertainty class D,. This

follows from two simple points: i) viewing the eigenvalues gi as a mapping from

the uncertainty class D, to the complex plane it is the case that boundary points

of the eigenvalue regions have unique pre-images in D, [Kouvaritakis and Latch-

man, 19851; ii) under the assumption that the perturbed eigenvalue regions avoid

the point (-1 + jO), the map of the E-Contours under the closed-loop eigenvalue

transformation 1i = 4j/(1 +4k) form simple closed curves and define bounded regions

which contain all possible values for the closed-loop eigenvalues 1j. The computation

of a worst- and best-case bound on maxj Iii - ijI, therefore, follows trivially from

the construction of the E-Contours; E-Contours of course are a prerequisite for the

assessment of closed-loop stability in the presence of uncertainty.

4.4.4 The overall assessment

For well conditioned eigenvectors (i.e. low jC(W)) the moduli plots of Section 4.4.1

together with the misalignment angle plots of Section 4.3 give a convenient means

of assessing (qualitatively) closed-loop interaction in terms of simple open-loop ge-

ometric properties. Thus for example, if at a particular frequency, the eigenvalue

I I m m m m m m• m i ,a -
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moduli, the partial condition number, and the misalignment angles obey the bounds

I j1 > 10, K:,(W) < 2 and .i < 200, then the overall bound on interaction will be

small (of the order of 0.1 or less) and the closed-loop system can be predicted to be

largely non-interactive at that frequency. Conversely, if the misalignment angles are

large (say 400) and the eigenvalue moduli 4, are not large (say lj /t 2) then (pro-

viding that pairwise the eigenvalues 4i are not nearly equal) significant closed-loop

interaction will be expected; even for the best partial condition number i(ft() = 1,

the bound of interaction could be as large as 0.86. The strength of this assessment

is that it relates (by simple graphical means) closed-loop interaction to simple open-

loop geometric properties. Should a more quantitative assessment be needed then the

bound on U2 proposed in Section 4.4.3 could be plotted. The calculation here is still

based on open-loop quantities with the exception of the term maxj Iti - ijI; however

due to the diagonal nature of the eigenvalue matrix of G, the relationship between

ti and 4i is no more complicated than the corresponding relationship between the

open- and closed-loop transfer functions of scalar systems.

4.4.5 Chemical reactor study

Consider an open-loop unstable chemical reactor with transfer function matrix:

3G=
s4 + 11.67s 3 + 15.75s2 - 88.31s + 5.514

(6.292s3 + 65.34s 2 + 179.66s + 63.62 29.2s + 263.3

-18.86s - 30.30 5.679s3 + 42.67s2 - 68.84s - 106.8

(4.54)

and additive perturbation, A, with modulus, IAI, given by:

S17.82 5.39

18Al +(.e+20.2 I I18s+4.95s+12.25I
-I 5.39 17.82

\82+4.95s+12.291 sr +6.36s+20.25/

It is noted that the transfer function matrix of (4.54) (and the corresponding per-

turbation bounds) have incorporated in them a high frequency pre-compensator the

details of which can be found in [MacFarlane and Kouvaritakis, 1977].
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The effect of the perturbation A on the relevant frequency plots are shown in

Fig. 4.2. In particular, Figs. 4.2(a) and 4.2(b) depict the uncertainty in the moduli

of the first and second characteristic loci, namely the loci that correspond to the

eigenvectors which best align with el and e2, respectively. The solid lines of the figure

correspond to the nominal plots whereas the dashed and dotted lines correspond

to the maximum and minimum values of the eigenvalue moduli, respectively. The

information concerning these maximum and minimum values is readily available from

the E-Contour plots shown in Fig. 4.2(f). Furthermore, this figure indicates that the

perturbed eigen-loci will give a net sum of two anticlockwise encirclements of the

critical point; this being precisely the requirement for the stability of the perturbed

closed-loop system. As pointed out previously, for a full assessment of interaction it

is necessary to compute the effects of the perturbation A on both the misalignment

angles and the partial eigenvector condition numbers. The misalignment angle plots

were obtained using the algorithm of Section 4.3.4 and are shown in Figs. 4.2(c)

and 4.2(d). The worst and best case misalignment angles are depicted by the dashed

and dotted lines, respectively. These plots are supplemented by the condition number

information which is plotted in Fig. 4.2(e); this plot was obtained via the algorithm

discussed in Section 4.4.2 and the dashed line here portrays the worst case condition

number behaviour. It is pointed out that in the 2 x 2 case, kj(iW) = IC(W) =

1/1 det(W)1; therefore, only one plot is needed for both loops.

Fig. 4.2 shows clearly that the effect of uncertainty is significant and cannot

be ignored when assessing closed-loop interaction. In particular, the poor condi-

tioning of the model at low frequencies (the nominal value for JC1(W) = AK2(W)

at 0.01 rad./sec. is about 5) results in large eigenvalue variations as shown by the E-

Contours of Fig. 4.2(f) as well as the modulus plots of Figs. 4.2(a) and 4.2(b). Poor

conditioning is also reflected in large variations of the condition number itself. It is

interesting to note that the eigenvector variations reflected by the partial condition

number values do not have a significant impact on the low frequency misalignment

angles; this appears to be a paradox, but is perfectly possible given the complex na-
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Figure 4.2: Perturbed chemical reactor study: Plots (a) and (b) depict the magnitude

of the characteristic loci. Plots (c) and (d) depict the misalignment angles. Plot (e)

shows the partial condition number while plot (f) shows the perturbed characteristic

loci bands. Maximum: (dashed) Nominal: (solid) Minimum: (dotted)
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Figure 4.3: Perturbed chemical reactor study: Plots (a) and (b) depict interaction
bound U2 for loops 1 and 2 respectively. Perturbed Maximum: (dashed) Nomi-
nal: (solid)

ture of *1 and *2 at the frequencies concerned. Conversely at high frequencies, say

at about 10 rad./sec. the nominal model is well conditioned (KCI(W) -- C2(W) • 1)

and thus the eigenvalues are not sensitive (the variations of ý,, as shown in Fig. 4.2(f),

and of their moduli, as shown in Figs. 4.2(a) and 4.2(b), are comparable to the size

of the perturbation class); however the eigenvalue insensitivity does not guarantee

eigenvector insensitivity as indeed is demonstrated by the variations in both the

condition number and the misalignment angles.

The overall assessment one can derive from an inspection of Fig. 4.2 is as follows.

A significant amount of interaction is expected in loop 2 both at low frequencies

(say w < 0.1 rad./sec.) and intermediate frequencies (0.1 < w < 5 rad./sec.); for

example at w = 0.01, since both 11 I and 1g21 are at least about 10, 1t1 - t21 will be

of the order of 0.1, while the worst case condition number is 10, hence the bound on

interaction will be given by the sine of the worst case misalignment angle q 2 which

(sine) is of the order of 1. On the other hand loop 1 is expected to be considerably

less interactive over all frequencies; for example at w = 0.01, using similar arguments

to the one presented above, a rough estimate of the bound on the interaction present

in loop 1 is given by the sine of the worst case misalignment angle k1 which (sine)

is of the order of 0.3. These predictions are indeed borne out by the plots of
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Figure 4.4: Perturbed chemical reactor study: Plots (a) and (b) depict the magnitude
of the off-diagonal elements of closed-loop transfer function matrix, R. Perturbed
Maximum: (dashed) Nominal: (solid)

Figs. 4.3(a) and 4.3(b) which depict the variations with frequency of the interaction

bound U2 for loops 1 and 2 respectively; once again the solid line refers to nominal

values whereas the dashed line shows the worst case bound. The validity of this

assessment of closed-loop interaction can be checked against the plots of Figs. 4.4(a)

and 4.4(b) which show the actual amount of closed-loop interaction as measured by

the size of the off-diagonal elements of the closed-loop transfer function matrix for the

perturbed open-loop model; the worst case values for this figure (shown by the dashed

line) were obtain by an exhaustive search algorithm which, even for this 2 x 2 case,

required a considerable amount of computational effort. A comparison of Figs. 4.3

and 4.4 shows that the graphical/geometric assessment gave realistic bounds on

interaction. In particular, at low frequencies the bound of interaction for loop 1 was

somewhat conservative but over intermediate and high frequencies for loop 1 and

over all frequencies for loop 2 the bounds were particularly tight. Furthermore due

to its geometric nature, the approach allows one to trace the causes of interaction

to simple open-loop properties such as the orientation of eigenvectors with respect

to the standard basis vectors and to one another as well as to the modulus of the

open-loop characteristic gains.
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4.5 Summary

The uncertainty associated with the nominal models of multivariable systems can

have significant effects on aspects of feedback behaviour such as stability, relative

stability, accuracy of tracking etc. as discussed in a plethora of papers published

over the last two decades. Uncertainty can also affect the interactive properties of a

feedback configuration, and the examination of this problem formed the main aim of

this chapter. The worst case uncertainty was characterized and this characterization

subsequently facilitated the determination of the worst case eigenvector misalign-

ment. When using the perturbed misalignment angle information in conjunction

with the information about the perturbed eigenvalue moduli and the perturbed par-

tial condition numbers, it is possible to use open-loop data to assess the worst case

closed-loop interaction. The theory developed also applies to the best case perturba-

tion, and so one can deduce upper and lower bounds on closed-loop interaction. The

suitability and strength of this approach was demonstrated by way of a numerical

study carried out on the model of open-loop unstable chemical reactor.
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Chapter 5

An overview of HOO optimal techniques

The previous portion of the thesis dealing with interaction and uncertainty was best

viewed from the characteristic locus framework since the associated geometry of the

system eigenframe enabled the use of simple open-loop quantities to analyze closed-

loop interaction. Indeed the preceding work on interaction in conjunction with the

E-Contour method completes the development of the characteristic locus approach

as a convenient robust analysis tool; however, the characteristic locus framework

cannot as yet accommodate general robust design. For example, even though the E-

Contour method defines the worst case relative stability margin, it cannot presently

be adapted for design with respect to the worst case (i.e. minimum) relative stability

margin. Therefore, the remaining portion of the work shifts to the investigation

of H' optimal control methods in order to pursue this robust design objective.

Moreover, in the course of pursuing this goal, this work produces new mathematical

theory pertaining to H- optimization. Consequently, in order to support the ensuing

H' theoretical development as well as the succeeding H' robust design presentation,

this chapter presents an overview of H00 optimal techniques.

5.1 Introduction

H001 optimal techniques are relatively new frequency domain approaches [Zames,

1981; Zames and Francis, 1983] which, in the previous decade, have yielded solu-

tions to such problems as the additive unstructured uncertainty robustness prob-

'H00 represents the Hardy subspace which contains functions F(s) which are both analytic and
bounded in Real(s) > 0, the oo in H00 represents the infinity norm defined on the subspace [Francis,
1987].

71
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lem [Glover, 1986] and the mixed disturbance rejection performance and multiplica-

tive output uncertainty robustness problem [Doyle, 1984; Francis, 1987]. These suc-

cessful applications of H°' theory to specific robust control problems have resulted

primarily because the relevant H' optimization function not only incorporates the

unstructured uncertainty characterization, but also because it generates an inter-

nally stabilizing controller. To see how the HOO optimization function incorporates

unstructured uncertainty, it is only necessary to point out that the scalar modulus

function which bounds the unstructured uncertainty [c.f. (2.1)] can be used to weight

the appropriate transfer function matrix. The way in which the H' optimization

function generates an internally stabilizing controller is far from obvious, yet has

an elegant solution in terms of the Youla parametrization [Youla et al., 1976]. In

addition to these key ingredients, the robustness to additive unstructured uncertainty

problem can be converted (by applying norm-preserving operations) to a Hankel ap-

proximation problem and, subsequently, solved explicitly using Glover's state-space

formulae [Glover, 1984]. At this point, an2 H' optimal solution (i.e. an optimal

Hankel approximation) can be used to construct the corresponding H' controller.

This design process is covered in more detail in the following overview of H- design.

5.2 An overview of Hc design

HOO design formulates closed-loop design objectives which can be subsequently

achieved by minimizing the He' norm. Before examining the H'° design formulation

however, we first need to define the H- norm and the relevant closed-loop transfer

funct;ons. The H"O norm is defined as:

f 1 E(s)l11. = supd [E(jw)] (5.1)

Here, E(s) represents a real-rational, proper, transfer function matrix; the notation

E(s) E RH' will be used to denote when this class of matrices is stable, whereas,

2The H' optimal solution is generally nonunique and therefore contains degrees of freedom
which the next two chapters characterize and use.
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the notation E(s) E RH_• will be used to denote when this class of matrices is

unstable. In general, E(s) will contain both stable and unstable components one of

which is known and the other of which must be determined using H' optimization

techniques to be addressed in the sequel.

In order to see how H' closed-loop design objectives are formed, consider the

multivariable feedback system of Fig. 5.1. This system' has three associated

d(s)

+ e(s) u(S)+ +

r(s) K s)y(s)
++

n(s)

Figure 5.1: Mnltivariable system with positive unity feedback subject to disturbances
and noise

transfer function matrices which directly affect stability and performance [Hvostov,

19901. First, the sensitivity function, defined as S(s) = [I - G(s)K(s)]-1 , governs

* the system's ability to track commands and reject output disturbances. Next, the
complementary sensitivity function, defined as T(s) = G(s)K(s) [I - G(s)K(s)]-1 ,

governs the system's tolerance to multiplicative output uncertainty as well as

the ability to reject noise. Finally, the controller sensitivity function, defined as

R(s) = K [I(s) - G(s)K(s)]J, governs the system's tolerance to additive uncer-

tainty as well as the control activity. H' design formulates control objectives by

appropriately weighting one or more of these sensitivity functions. For example, a
3This system has positive feedback which is the convention used in most H' literature.

In m l mnn nn uunrueH
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useful H' 0 optimization problem is formulated as [Chiang and Safonov, 19881:

wi(S)S(S)
min W2(s)R(s) (5.2)

StabilizinqK

w3(s)T(s)

where the H'0 optimal controller, K(s), is that which not only minimizes the H'0

norm but stabilizes the closed-loop system as well. Additionally, (5.2) confirms

that the H00 design objectives enter the problem formulation through the weighting

functions WI(S), w2(s), and w3 (s) which shape the respective sensitivity functions.

The general H'0 optimization given by (5.2) represents the standard HO0 prob-

lem [Francis, 1987] which can be obtained by a simple loop transformation of Fig. 5.1

as depicted in Fig. 5.2'. In this figure, the input w = d is the generalized sig-

w z
P

U Ky

Figure 5.2: Standard H// problem

nal vector of commands, disturbances, and noise while the output z = (•)is the

generalized signal vector of tracking errors, control inputs, and measured outputs.

Additionally, u is the control input signal vector and y is the measured output signal

vector. Fig. 5.2 also defines a generalized plant transfer matrix P which maps the

input signals to the output signals in the following manner:

(P21 P22  (

z = P11w + P12u (5.3)

- y = P 21w + P2 2 u (5.4)

4For notational convenience, the argument s will be dropped throughout the remainder of this
chapter.
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Thus, P11 and P12 are the transfer functions which map commands, disturbances,

noise, and control signals to tracking errors, actuator commands, and the output.

Likewise, P21 and P22 are the transfer functions which map commands, disturbances,

noise, and control signals to the measured output. Here, P22 simply represents the

nominal plant G and thus, the generalized plant P provides a convenient means of

capturing additional aspects the design problem. The generalized plant/controller

configuration of Fig. 5.2 also permits the standard H' problem (5.2) to be rendered

in an alternative representation discussed next.

The input-output map from w to z may be represented with a linear fractional

transformation which may be obtained from (5.3) and (5.4) along with the fact that

u = Ky in Fig. 5.2 to give:

Z = [P11 + P1 2K(I - P 2 2 K)-'P2,] w

z = FI(P,K)w

Thus, the linear fractional transformation F1(P, K) serves as a mapping from the

generalized inputs to the generalized outputs. With this representation, tile general

H' norm minimization problem given by (5.2) can be rewritten in the following

compact form of tile standard problem:

min If(P,K)IK (5.5)
StabilizingK

where the controller K stabilizes the closed-loop containing the nominal plant P 22 .

Remarkably, both the assessment of the stabilization of the closed-loop and the

minimization of the H' optimization function (5.5) are concurrently simplified by

using the Youla parametrization of internally stabilizing controllers which will be

examined after defining internal stability.

5.2.1 Internal stability

An explicit characterization of internal stability is useful because it intrinsically ac-

counts for possible right half-plane pole cancellations between the plant G' and the

'G in this context is identical to P 22 .
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controller K. In particular, if the closed-loop system is stable at each internal node,

overall stability follows. Consider the system shown in Fig. 5.3. In this figure,

v1 + e

Figure 5.3: Block diagram for internal stability definition

v1 and V2 are superfluous inputs introduced to define internal stability. Specifically,

internal stability implies that if vi and v2 are bounded "inputs", then the correspond-

ing "outputs" el and e2 will remain bounded. Consequently, the transfer function

from the inputs (•,) to the outputs (" ) must be stable for internal stability to

hold. Algebraic manipulation of the governing equations yields:

(v) = (_ I -K)(el) ( (5.6)

In order to write the outputs in terms of the inputs, the transfer matrix of (5.6) must

be invertible in RHI and its inverse is given as [Kailath, 1980]:

-G ) = (I - GK)-IG (I - GK)-) (5.7)

For internal stability, it is necessary and sufficient to check that each of the four

entries in (5.7) are in RH' [Francis, 1987]. This internal stability characterization

forms the basis for the following parametrization of all stabilizing controllers for a

given plant.

5.2.2 Stabilizing controller parametrization

The parametrization of all controllers K which stabilize a given plant G can be

achieved through the following fractional representations [Desoer et al., 1980; Moore

et al., 1990]:

K` = UV- = V-1 (5.8)
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G = NM-' = (5.9)

where U, V, U, V, M, N, M, and N are in RHT' with (U, V) and (M, N) pairwise

right coprime6 in RHT and (0, 1ý) and (M, N) pairwise left colyime in RH_ . Right

coprimeness requires the removal of the greatest common right divisor while the

converse applies for left coprimeness. A useful characterization of right coprimeness

is given by the Bezout Identity [Kailath, 19801. This identity states that U and V

are right coprime in RHr if and only if there exist stable functions X and Y such

that:

XU+YV=I

A similar identity can be used to characterize left coprimeness. These coprime char-

acterizations and the fractional representations of (5.8) and (5.9) are fundamental to

the following parametrization of all controllers K which stabilize a given plant G.

The fractional representations of (5.8) and (5.9) can be employed in (5.6), sub-

sequently inverted, and factored into coprime parts to yield the following equivalent

internal stability requirements:

(GI N - _1ý fl

Using the Bezout Identity and the definitions of (5.8) and (5.9), it can be shown that

the latter two requirements satisfy:

( -15;G5 )(1~ (5.10)

This important relation can be combined with the fractional representations of (5.8)

and (5.9) as well as the following state-space realizations for M, N, kl, and N to

give the general observer-based structure of all stabilizing controllers. First, consider

the state-space representations of the plant coprime factors given below [Nett et al.,

1984]:

AI (A+BF O N (BA + BF B) (5.11)
kF I) ( DF D (.1

6The right coprimeness in RtI_0 of U and V, for example, implies that U and V have no common
unstable zeros.
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(A+HC H A+HC B+HD

where G = NM-1 -1i = A[ +AB Additionally, F is stabilizing state feed-
LC D

back and H is stabilizing output injection which, when obtained in the following

way [Doyle, 1984]:

F -BTXc where X, satisfies XA + ATXC - XCBBTX, = 0 (5.13)

H = YCT where Y, satisfies YoAT + AY, - Y0CTCYo = 0 (5.14)

make Al and ]I inner, respectively. In particular, these inner transfer function

matrices are special all pass systems that satisfy MT(-s)M(s) = MI(s)AVIT(-S) = I;

this property will be useful in performing subsequent norm-preserving operations.

Thus, the state-space representations of (5.11) and (5.12) in conjunction with (5.10)

give the following observer-based controller structure which is the central form of all

stabilizing controllers [Doyle, 1984]:

K A( +BF+HC+HDF -H) (5.15)F 0

The controller subscript indicates that K& is the "central" stabilizing controller and

it will be seen below that additional dynamics can be added to this basic controller

form to obtain additional degrees of design freedom. However, it should be re-

stated that (5.10) encapsulates the requirement for internal stability in terms of

fractional representations which are suitable for the parametrization of all stabilizing

controllers of a given plant. In order to generalize the internally stabilizing controller

result of (5.15) to include all internally stabilizing controllers, we require the Youla

parametrization [Youla et al., 1976; Doyle, 1984].

The Youla parametrization characterizes all stabilizing feedback controllers for

a given plant. It can be stated in the following way: Let K& = UoVfi1 = Vfi

be the fractional representations of the controller such that the internal stability

requirement encapsulated in (5.10) holds. For any transfer function Q E RHT,



5.2 An overview of HOO design 79

define the following transfer function matrices:

U = Uo + MQ, V = V, + NQ (5.16)

U = U + QM', V = Y, + QN (5.17)

Then K = UV-1 = 'U characterizes all stabilizing controllers for a given plant

G = NM-1 = M-N. The proof that this parametrization is stabilizing follows

by substituting (5.16) and (5.17) into (5.10). The proof that this parametrization

generates the entire class of stabilizing controllers is straightforward and can be found

in [Doyle, 1984].

This parametrization based on the Youla parameter Q has powerful implications

in the H' design procedure. Consider the impact on the standard H' norm min-

imization problem of (5.5). Using the fractional representations for K and P22
7

given by (5.16) and (5.17), the original H' problem may be transformed using the

following steps:

mi FR(P, K)I K E = m P11 + P12K(I - P22K)-'P2[

KERHRH+

mi QJ I11H + P12 (U0k + MQMI) P2111.
= min I(P1 + P12U 0MP 21 ) + P12MQIIP211i,

= min lIT, + T,2QT2,11 (5.18)
QERH7

= II F(T,Q)II1

where K(I- P22 K)-= (uVofM + MQM),

T1= (P11 + P12U.MP 21) T12 = P12M

T21 = ifP 21 T22 = 0

Thus the original HOO norm minimization problem has been transformed from a

nonlinear minimization over K E RHO to an affine minimization over Q E RH•.

The final linear fractional transformation, FI(T, Q), is in the form of the model-

matching problem in which the "model" transfer function T11 is to be matched by

7Recall that P22 = G.
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the cascade transfer function -T 12QT21 with the constraint that all four functions

are in RH• [Francis, 1987].

5.2.3 Hankel approximation

The model-matching problem can be converted into a distance problem which, in

turn, can be solved by Hankel approximation theory. The conversion of the model-

matching problem begins with the application of norm-preserving operations and

factorizations to the model-matching terms of (5.18). This results in a difference of

two terms: one which is stable and one which is antistable. This' can be written as:

min iIT + T12QT2111, = min IG - FIIoo

QERH• FERHý

where G' is the known antistable transfer function and F is the unknown stable

transfer function to be optimally determined. Note that G will not usually equal

T11 and F will not usually equal -T 12QT 21 as a result of the norm-preserving oper-

ations and factorizations. In addition, the stable "free" transfer function Q remains

embedded within F since Q is in RH"'0. Thus, the model-matching problem above

is equivalent to a distance problem whereby the distance from the known antistable

transfer function G E RH_ is minimized by the optimal choice of the unknown

stable transfer function F E RHT.

Hankel approximation theory can be used to solve the distance problem by char-

acterizing the unknown stable function (i.e. the approximation) in terms of the

known antistable function [Safonov and Verma, 1985]. In particular, it is well known

that the optimal approximation has a minimum distance from the antistable function

and the specific value of the minimum distance is given by the Hankel norm defined

as [Glover, 1984]:

FRmin IG - Fl1= II=GIIH (5.19)FERHOO

""in the 1-block problem.
9 G here is to be distinguished from the plant transfer function matrix. This conforms to the

notation given in [Glover, 1984].
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where G*(s)-GT(-s) is a completely stable, proper transfer function in RHT and

H is the Hankel matrix associated with G*. In addition, the controllability and

observability gramians, denoted X and Y respectively, are given as [Francis, 1987]:

X 0 j eAt BBAT'adt

Y fo eATtCTCeAtdt

Here, the state-space component matrices A, B, and C are those associated with

stable transfer function G*. Furthermore, it is straightforward to show (by using the

appropriate matrix differential equations) that the gramians satisfy the following

Lyapunov equations:

AX+XAT + BBT = 0 (5.20)

YAT + AY + CTC = 0 (5.21)

With these gramians definitions, the value of the Hankel norm of (5.19) can be

obtained as:

IIG*IIH = VRXY) (5.22)

where p( ) denotes spectral radius. This basic relationship between the Hankel

norm and the controllability and observability gramians can be derived by consider-

ing how the Hankel operator maps past inputs (controls) to future outputs (obser-

vations) [Francis and Doyle, 1987]. The role played by the gramians is fundamental

in producing an explicit state-space realization for the closest antistable transfer

function to the given stable transfer function; however, the gramians must first be

balanced [Moore, 1981].

The gramians of a completely controllable, completely observable, stable, and bal-

anced state-space realization are equal, real, and diagonal and are given by [Pernebo

and Silverman, 1982; Laub et al., 1987]:

X = Y = E= diag{oaii
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where the ai's are the ordered Hankel singular values (e.g. al = p(XY)). If the

system is initially unbalanced, the gramian diagonalization can be obtained by using

a similarity transformation M = E-1/ 2U*R where Y = R*R is a Cholesky factoriza-

tion of Y, RXR* = UE 2U*, and U is unitary [Glover, 1984, p. 1129]. Subsequently,

both gramians can be diagonalized in the following manner:

MXM* = M*-' YM-1 = E

When the balanced gramian is partitioned, it permits the conformal partitioning of

the state-space matrices associated with the stable transfer function G*. Further-

more, this partitioning facilitates the derivation of a state-space realization of the

closest unstable transfer function to the given stable transfer function.

The explicit state-space realization of the solution to the Hankel approximation

problem has been provided by Glover [Glover, 1984]. An outline of the solution

begins with the HII norm minimization problem:

min IIG- FIoo

FERHcý

where G E RH• is a completely unstable (analytic in Real(s) _ 0) strictly proper

transfer function. The HO° optimal solution F E RH• achieves an all pass error

equal to the Hankel norm: minFEH'J JIG - FI1o. = -IG*IIH. Moreover, the explicit

state-space realization of an" H' optimal solution F is derived from the state-

space realization of G*. The specific state-space formulae will be presented in the

following chapter along with a characterization of the degrees of freedom contained

therein. After employing the state-space formulae to determine F, the optimal trans-

fer function Q E RHI may be constructed where Q is defined by the H- norm

minimization problem of (5.18). Subsequently, substituting the parameter Q in the

Youla parametrization of (5.16) and (5.17) and using (5.8) determines the optimal

controller transfer function K. This overview of H' design is briefly set forth in the

following robustness to additive unstructured uncertainty problem.

"i1n general there are an infinity of HO optimal solutions. The selection of a unique solution
based on additional objectives will be the subject of the following two chapters.
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5.3 H' optimal control: robustness to additive

uncertainty

Consider the perturbed multivariable system of Fig. 5.4 in which the additive un-

structured uncertainty is bounded by ' [A] < b. Given the objective of designing

r + K G+A Y

II

Figure 5.4: H' additive uncertainty model

an H' controller which stabilizes the loop for all possible perturbations of the plant,

the optimal H- controller is given by:

mrin JIbAK(I - GK)-IIo < 1 (5.23)
KERH7'

where K(I- GK)- is the controller sensitivity function. Moreover, the requirement

that the norm be less than or equal to one can be easily derived from spectral radius

stability criterion of (2.5). Using the Youla parametrization of (5.16) and (5.17), the

nonlinear optimization(5.23) is converted into the following affine optimization:

mrin J5UV-'(I- fI 1 NfUV-')-III-
QERHý

= min U(MVo - NUo) + (AIX - NM)Q- 1hll 00

= rmin IU [I + 0 1-' ,•A/f.

QERHý

= rmin I(UV + MQ)MRII
QERH+

where use has been made of the internal stability requirement of (5.10). Subsequently,

the determination of the output injection H [c.f. (5.14)] allows the removal of M• from

the minimization by making ht inner. Finally, the Hankel norm approximation may

be written as:

mrin M-'Uo + bQIIl < 1

QERH4-
L
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Notice that the unstructured perturbation 6 can be viewed as a scalar weighting
function which simply scales the norm. Hereon, the problem can be converted to a

Hankel approximation problem and finally solved using Glover's state-space formula.

Additional details of this process will be explored in more depth in the following

chapter.

5.4 Summary

This chapter served to re-orient this work toward H' optimal techniques in order to

lay the groundwork for the ensuing H`O theoretical development as well as the H'

robust design presentation. An overview of the HOO optimal methods was given by

considering the general formulation of the HOO optimization problem and observing

that the design objectives are mathematically embodied in the weighting functions

which multiply the appropriate sensitivity transfer matrix. After formulating the HO

optimization, the Youla parametrization of internally stabilizing controllers was pre-

sented. This elegant parametrization not only ensured closed-loop stability, but also

simplified the actual optimization problem through conversion to a Hankel approx-

imation problem. Moreover, in the robustness to additive unstructured uncertainty

problem, it was noted that the Hankel approximation could be expressed in terms

of Glover's state-space formulae; these formulae will be explicitly enumerated in the

following chapter along with a characterization and use of their implicit degrees of

freedom.



Chapter 6

Characterization and use of the degrees

of freedom in the HO problem

6.1 Introduction

It has been known for some time that the H!/ approach can be used to design

robust feedback controllers which maintain stability in the presence of plant uncer-

tainty [Zames, 1981; Zames and Francis, 1983]. Not surprisingly, H' robust design

methods have received considerable attention over the past few years. Underpinning

those methods is Glover's seminal work on optimal Hankel approximations [Glover,

1984] which gives explicit state-space formulae that yield an H' optimal solution.

However, as mentioned in the preceding chapter, there are infinitely many trans-

fer function matrices which qualify as H' optimal solutions; in order to restore

uniqueness, a strengthening of the H' optimization problem, labelled the H' super-

optimization problem, was presented in [Young, 1986b] and subsequently reliable

state-space algorithms were presented in [Tsai et al., 1988; Limebeer et al., 1989].

The present objective is to characterize the degrees of freedom contained in the

H' optimal solution so that they may be used to obtain desirable properties in the

Hankel approximation. In particular, for a special class of transfer function matrices,

it will be shown that the degrees of freedom can be deployed to obtain stationarity of

either the controllability or the observability approximation gramians. Remarkably,

for the specified class of transfer function matrices, the stationary conditions for the

gramians of the approximation system impose flatness on all of the error system

singular values. Although the error system singular values are simultaneously ma-

85
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nipulated and made flat (as a function of frequency), they do not in general attain

their super-optimal values. Hence, it may be necessary to submit the error system to

a super-optimal algorithm in order to minimize the remaining singular values, and,

in this context, the degrees of freedom can be used to match the error system to

either the left or right maximizing vector. It will be shown that the matched error

systems produce completely stable projections when multiplied by the complemen-

tary maximizing vectors. Clearly, this feature has obvious implications (a reduction

in the computational burden) for any attendant super-optimal algorithm.

The main thrust of this work is not the development of a super-optimal algorithm,

but rather the exploitation of the H' optimal solution degrees of freedom to advan-

tage, which advantage is sometimes so great that near super-optimality is attained in

one HOO optimal solution iteration. As will be seen, a natural by-product of using the

Hco optimal solution degrees of freedom is the emergence of an alternative super-

optimal algorithm; the super-optimal solution is unique and hence, the algorithm

presented clearly must overlap with earlier work [Tsai et al., 1988; Limebeer et al.,

1989]. The super-optimal solution can be computed in many different ways, however,

by using the degrees of freedom as subsequently presented, there is a concomitant

lessening of the computational burden. If super-optimality is desired, the proposed

algorithm uses the H' optimal solution degrees of freedom to attain total flatness

within each cycle of iteration and to eliminate (suppress) all unstable poles in the

special case considered or maximal number in the general case.

This work begins in the next section by presenting the H' 1-block optimization

problem as well as the H'l optimal solution to that problem. In addition, the salient

features of the super-optimal solution as they relate to the present work are depicted.

Subsequently, a characterization of the degrees of freedom contained within the Hm

optimal solution is given along with an important Hankel singular value relationship.

Section 6.3 begins by exploring how the degrees of freedom may be used to obtain

desirable properties in the HO' optimal solution. In order to present the results in

a logical sequence from the simplest case to the most general, the focus is initially
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restricted to the special class of transfer function matrices in which the number

of states equals the number of inputs and outputs. [It is acknowledged that this

class is very special and is therefore unrealistic from a practical viewpoint, however

it is initially considered in order to gain insight.] For this class, it is possible to

identify the desirable approximation system properties such as gramian stationarity,

error system singular value flatness, and stable complementary maximizing vector

projections. Finally, these properties will be highlighted using two examples studied

previously in the literature [Young, 1986a; Tsai et al., 1988; Limebeer et al., 1989].

6.2 Background

"The H' 1-block optimization problem is given by'

rain JG(s) - F(s)I. (6.1)F(s)ERHm_

where G(s) is a stable function in RHII and F(s) is an antistable approximation

in RH'. In [Glover, 1984, Theorem 6.3 and Corollary 7.3], explicit state-space

formulae were provided which solve the H' 1-block optimization problem in terms

of a Hankel approximation. These formulae, hereafter referred to as the Central

Glover Solution are formalized in the following lemma.

Lemma 6.1 (Central Glover Solution)

Given a stable transfer function G(s) E RH+' with minimal, balanced state-space

realization G(s) = A B ] and equal, diagonal controllability and observability

gramians X = Y which satisfy the following Lyapunov equations

AX + XAT + BBT = 0 (6.2)

ATy+YA+CTC = 0 (6.3)

'The form given here differs from that given in (5.19) where G(s) E RHO° and F(s) E RH+;
however, (6.1) conforms to the way in which the problem is stated in [Glover, 1984].

I
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partition A, B, and C conformally with X and Y in the following manner:

al (` 0) Z[+ B all A12 Bx]

B1= = C A21 A22 B2  (6.4)
0 2) D 1 A 2 B

DJ2C1 C2  D

where E2 = diag{0 2,..., U} and a, > 2_ > ... an > 0. The H' optimal solution

F(s) E RtI_ of (6.1) has the state-space realization F(s) [ ] given by:

A F'(a A T + r22A22E2 - CUB2)

B - 2 +-(B2 + C-TU)

C - C2E2 +±aUB2

D D-a1 IU

where F E2 - 0o1I and U is a matrix satisfying:

=i B1 =-cTu (6.5)

(ii) UTU < 1 (6.6)

Additionally, the balanced realization and conformal partitioning yield the following

useful formulae. First, (6.2) implies

(1) BIBTf = -2(rial (6.7)

(2) A12E 2 + al A T + BIBT = 0 (6.8)
(3) A22 E2 + > 2AT + B2Bv = 0 (6.9)

Similarly, (6.3) implies

(1) CTC1  -2a, a11  (6.10)

(2) ajA, 2 + A21 2 +IC+ C 2 = o (6.11)

(3) E 2A22 + A~Y2 +CC2  0 (6.12)

The error system Ge(s) = G(s) - F(s) has associated controllability and observabil-

ity gramians given by X, and Y, respectively, which satisfy the following Lyapunov
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equations

AeXe + XAT + BB T = 0 (6.13)

A'ye + YeAe + CTCe = 0 (6.14)

where

Aeý= ( , Be= B C,=(C -C), D,=Db (6.15)

Furthermore, the error system controllability and observability gramians are given by

Xe= 0 E2 1• 0 F2 -F (6.16)

0 1I c -r

where the approximation system controllability and observability gramians are given

by

-+ AT+B!3T = 0 (6.17)

4Tf+ j+ TO = 0 (6.18)

For clarity of presentation, the assumption has been made in the above that

the maximum Hankel singular value a, is distinct. This assumption will be made

throughout this chapter and the next with the understanding that the results can

be extended to the case when a1 is repeated and simple. In the case that U of (6.5)

and (6.6) is unitary, it turns out that XC = E2 F-1 and k = E2F as shown in [Glover,

1984, Theorem 6.3]. The validity of these substitutions follows directly by expand-

ing (6.13) and (6.14) and solving for the (2,2) blocks. Prior to characterizing the

degrees of freedom contained in the Central Glover Solution, the pertinent back-

ground relating to the H'l super-optimal solution will be reviewed.

Conditions (6.5) and (6.6) do not define a unique matrix U and so there exist

infinitely many central optimal approximation systems for all but the scalar case.

To restore uniqueness, super-optimality seeks to find the unique extension F(s) such

that the sequence of s-numbers

s'(G(s) - F(s)), s' (G(s) - F(s)), s'(G(s) - F(s)),... (6.19)
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is minimized with respect to lexicographic ordering where for any G(s) E RL'

si'(G(s)) = sup u1(G(jw)) (6.20)

and a•(G(s)), represents the ith singular value of matrix G(s). Thus, the H' super-

optimal approach seeks to minimize the supremum over w of all the error system

singular values other than the largest which is minimized implicitly as part of the

Central Glover Solution and given as soo(G(s) - F(s)) = o,,. The H' super-optimal

approach has been solved using state-space representations of maximizing vectors

in block diagonalizing algorithms [Tsai et al., 1988; Limebeer et al., 19891 and the

relevant details are examined next.

The H' super-optimal approach constructs inner maximizing vectors as well as

their complements in order to block diagonalize the transfer function G(s) - F(s)

contained in the H' cost function (6.1). In terms of the error system returned by the

Central Glover Solution G,(s) = G(s) - F(s), the maximizing vectors x(s) E RH2

and y(s) E RH 2 form a Schmidt pair [Young, 19831 which satisfy

Ge(s)x(-s) = aly(s) and IIx(s)112 = IIY(s)112 (6.21)

Given the state-space representation for G(s) = [A ] C RHT, the maximizing

vectors are made inner and augmented by conformal, inner, orthogonal complements

(labelled xj(s) and yj(s)). The maximizing vectors and their orthogonal comple-

ments are paramount in reducing the problem dimension so that the transfer function

Ge(s) = G(s) - F(s) can be iteratively block diagonalized thereby permitting direct

application of the Central Glover Solution at each subsequent iteration. For example,

the following illustrates the block diagonalization of the dimension reduction process.

YL(5) Ge(s) [ x(-s) x((-s)

011 0tr] 00

where y±T(-s)GL(s)x±(-s) defines the dimensionally-reduced system. At this

point, it is necessary to introduce superscripts to identify the quantities gener-
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ated during each iteration of the super-optimal algorithm. Hence, if the iter-

ation count begins at zero, all of the quantities above would have the super-

script zero (i.e. Ge(s) becomes G°,)(s)). Using this convention, the dimensionally-

reduced system (or projection) generated during the (i - 1)th iteration is denoted

[yT (i-1)(-s)G('-1)(s)x±(i1)(-S)]. In order to prepare for the next iteration (i.e.

the (i)th iteration), this projection is split into stable and antistable parts labelled

GW') and Q(i), respectively. These are given as

G(')(s) = [y±T (- 1)(-s)G(-1)(s)x±(i-1)(_s)]+ E RH+ (6.22)

Q(t)(T) = [yT (t-)(s)G(:-)(s)x1 (i-1)(_E)] e RHOr (6.23)

Subsequently, the Central Glover Solution is employed to generate an antistable

approximation F()(s) to the stable component G(M)(s). Finally, the antistable com-

ponent Q()(s) must be added to the approximation F()(s) and subsequently mul-

tiplied by the complementary maximizing vectors of previous iterations to form the

intermediate super-optimal solution F.$o)(s) at this stage.

This description of super-optimality lays the groundwork for the presentation in

the subsequent sections which, for the special case studied in Section 6.3, results in

Q(i)(s) = 0 and, for the more general case studied in the next chapter, results in

the minimal number of states contained in Q()(s). Before discussing these results

further, a characterization of the degrees of freedom contained in the Central Glover

Solution is in order.
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Lemma 6.2 (Central Glover Solution degrees of freedom)

The structure of U which satisfies BI = -CTU of (6.5) and uTu < I of (6.6) may

be written as:

U=(C ) 0 (6.24)

where B- = BB/11BI-'I['!"T =0 ! =LbLT I IPI<l 1
1 1 1C I 6 1,_0 1 1 LTO I-

Proof: (See Appendix 6A.)

The parameter P of (6.24) completely characterizes the degrees of freedom con-

tained within the Central Glover Solution. Observe that by setting P = 0, the

matrix U. of [Glover, 1984] (Corollary 7.3) is obtained. The following restatement

of the Central Glover Solution clearly exposes the way in which the free parameter

P threads through the state-space formulae.

A = F-'(A- _ OCTpB) (6.25)

b = r-'(E 2 B 2 - aC2TIBI + UCTP!•1 ) (6.26)

= (-!AT P'(O'ICTP + 2BT))(B 1 )6.7)3A12 1 (6.27)

0 = C2E 2 - aCOfBT+ aCiLPB (6.28)

(1 ( Op -j( A 2r (6.29)
a, PB + CE2

b = D +oal 01 BI-,COP3PB (6.30)

D- )( 0 -B 1A (6.31)

where

A22 + E 2 A22 2 + lC l 2BT (n - 1) x (n - 1) (6.32)

B = B±BT (mr- 1) x (n - 1) (6.33)

C = C1T C2  (m-- 1) x (n - 1) (6.34)

= IIB1II= IICII =V-_2ajjoj (6.35)
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Here, m and n are the number of inputs/outputs and states, respectively, in G and

the hat (^) represents quantities which have been normalized to have unit norm.

Clearly, A represents the components of the Central Glover Solution state matrix

A which do not multiply the parameter P. Moreover, because B and C directly

multiply P, they will play an increasingly important role in accessing the degrees of

freedom contained within P. Before accessing these degrees of freedom however, the

definitions above will first be employed to show that the Hankel singular values E2

satisfy the Riccati equations given in the following lemma.

Lemma 6.3 (Hankel singular value property)

Let G(s) be a stable transfer function matrix and let E2 = diag{0 2,., an} where

al > U2 ... >o, >0 are the Hankel singular values of G(s). The Hankel singular

values E2 satisfy the following Riccati equations:

(i) E2AT + Ar 2 + E2B + 12cTC + -FAA 2 r = 0 (6.36)

(ii) E2 A + ATE2 + E2 CrC1 2  + a2BTB + rA21 Arr = 0 (6.37)

where A, B, C, and/3 are given by (6.32) through (6.35).

Proof: (Appendix 6A.)

6.3 Using the degrees of freedom in the square

case

The structure of matrix U given by (6.24) clearly exposes the Central Glover Solution

degrees of freedom in terms of the parameter P and here, the degrees of freedom are

given up in order to attain desirable properties in the Central Glover Solution. This

chapter focuses on the special class of stable transfer function matrices G(s) in which

the number of states equals the number of inputs and outputs (i.e. when n = m = p

and B and C full rank), hereafter referred to as the square case. The reasoning for

this is twofold: first, the presentation of the state-space algebra is unhindered by
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discussions of nullity and second, the desirable Central Glover Solution properties

such as error system singular value flatness and stable complementary maximizing

vector projections are most clearly seen in this case. Initially the simplest, nontrivial

square case is explored; this case contains two states, two inputs, and two outputs.

For this simple case, super-optimality may be obtained in the context of the Central

Glover Solution by solving a simple quadratic equation involving the free parameter

P. To illustrate the strength of this result, an example studied previously in [Young,

1986a; Tsai et al., 1988] will be employed.

6.3.1 Two-state square case

The two-state square case has two inputs and two outputs and constitutes the sim-

plest of transfer function matrices which possess a degree of freedom within the

Central Glover Solution. In particular, for this case, both the free parameter P

and the approximation system state matrix A are scalars. Moreover, for this sim-

ple case, the second singular value of the error system is only a function of fre-

quency w and the parameter P. Since a super-optimal solution of order 1 is known

to exist and be unique [Limebeer et al., 1989], the value of the parameter P (for

IIPII < 1) which makes the second singular value of the error system flat will also

define the unique super-optimal solution; i.e. for this case total flatness defines super-

optimality [c.f. (6B.3)].

Theorem 6.1 (Quadratic super-optimality)

For the condition i[PJJ <• 1 in the two-state square case, the values of the parameter

P which attain total flatness of the error system singular values are given by either

P = ±1 or P = P,, where P., is given by:

P.o = (o,1BC)-' (A + VFA2 - (aoBC)2) (6.38)

Additionally, A, B, and C are defined in (6.32) through (6.34) and are all scalars.

Furthermore, P., is the value of the parameter P which yields the super-optimal

error system whereas the values of P = ±1 yield an error system which is all-pass.
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The two s-numbers of the super-optimal error system are given by:

Soo= al = osiP 8  (6.39)

Proof: (See Appendix 6B.)

Remark 6.1 Note that an inspection of (6.25) together with the facts that A > 0

and IPI < 1 imply that the discriminant of (6.38) satifies A2 - (OIBC)2 > 0 so that

the parameter Po is always real.

The following result is an immediate consequence of the definitions of the con-

trollability and observability gramians of the approximation system (i.e. of F(s)).

Corollary 6.1 (2-state approximation gramian stationarity)

Under the condition that the Hankel singular values {fa, o2} of G(s) are distinct, the

controllability and observability gramians fC, k" of the approximation system F(s),

as well as their product X1', each have two stationary points with respect to the

parameter P corresponding to the two roots of the following quadratic equation:

-P+ (1A +=0 (6.40)

The root P,, given in (6.38) of Theorem 6.1 defines the unique minimum of the

negative approximation system gramians -X and -Y" as well as their product XY.

Proof: (See Appendix 6B.)

Thus for the simple 2-state square case, the stationary condition for X and Y

defines the value of the parameter P which yields total flatness of the error system

singular values. In the next section, it will be shown that this observation carries

over to the general square case. First, it is interesting to record the observation

below:
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Corollary 6.2 (Error system gramian trace stationarity)

For the 2-state square case, the product of the error system controllability and ob-

servability gramians defined by (6.16) assumes the form:

o E. or -r

and clearly one of its eigenvalues is o.. Furthermore, the parameter P,, given

in (6.38) of Theorem 6.1 defines the global minimum of the trace of XeYe.

Proof: (See Appendix 6B.)

It has been shown [Moore, 1981; Wicks and DeCarlo, 1990] that the eigenvalues

of the product of the controllability and observability gramians are indicators of

energy dissipation in particular directions, hence, the maximum eigenvalue bounds

the maximum energy dissipation in any direction. It is interesting therefore to note

from Theorem 6.1 and its Corollaries that the super-optimal parameter P,3 emerges

as the solution which minimizes the product of the approximation system gramians

kl' (and hence its eigenvalue, given that both Xý and Y are scalar) and also as the

solution that minimizes the sum of the eigenvalues of XY,.

In addition to minimizing the product of the approximation gramians for the two-

state square case, Theorem 6.1 permits the a priori characterization of the super-

optimal Hankel approximation F&,(s) = [ +4° B.° 1in terms of the known stable
[C. D..

transfer function G(s) = [+ B and P,,. For example, substituting the super-
. sDu

optimal value of P,, given by (6.38) into (6.25) reveals that the H' optimal eigen-

value A becomes the H°' super-optimal eigenvalue Ao = -- 1 A 2 
- (o- BC)2.

The strength and simplicity of the result encapsulated in Theorem 6.1 is illustrated

below.
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Example 6.1 The example studied in [Young, 1986a; Tsai et al., 19881 is a two-

state square system with stable transfer function G(s) given by the following minimal

balanced realization

-1.6928 -0.5422 -3.3737 -0.5886
0.8P53 -0.3072 0.5506 0.7521

G(s) ttA 2 1 A2 2 B2  I
A2 BD = -3.2160 0.1425 -3.7321 -1.0000C1 C2 D

-1.1171 -0.9212 -3.7321 1.0000

The corresponding Hankel singular values and the parameters of Theorem 6.1 which

are independent of P are given as

{1', r2} = {3.4641,1.4142} A = -4.7262 B = -0.6463 C = 0.9140

Computing the two roots of Equation (6.40) and taking the root which satisfies

IPfJ ,5 1 yields the super-optimal value of the parameter P together with the corre-

sponding matrix U as

P, = 0.2277 U=( -0.9116 -0.2385

\ -0.3753 0.1516/

The state-space representation of the super-optimal approximation F&o(s) E RH'

then follows from Lemma 6.1

0.4260 0.1526 0.0462

Fso(s) = 2.1588 -0.5740 -0.1738

1.6236 -2.4318 0.4749

and its associated s-numbers are s- = 3.4641 and s' = alIPJ = 0.7889.

This simple example illustrates how characterizing the Central Glover Solution

degrees of freedom and relinquishing them in an optimal fashion enables signifi-

cant computational savings. In particular, the simple quadratic equation root given

by (6.38), supplants previous super-optimal algorithmic requirements to compute two

Riccati equations, compute two Central Glover Solutions, and implement subsequent

minimal realization algorithms [Tsai et al., 1988].
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6.3.2 n-state square case

Corollary 6.1 demonstrated that the results of Theorem 6.1 can be obtained by

differentiating the product of the scalar approximation system controllability and

observability gramians to find their corresponding stationary point. However, in

larger dimensioned square cases, the approximation gramians are matrix valued and

differentiation of their product quickly becomes cumbersome. Alternatively, each

gramian may be differentiated and the following lemma generates the desired sta-

tionary conditions in terms of the free parameter P.

Lemma' 6.4 (Approximation gramian stationarity)

The necessary and sufficient conditions for the stationarity of the approximation

controllability and observability gramians in terms of the free parameter P are given

by:

XBT = r-1 (alCTp + E2 BT) (6.42)

CF-'f' = a1̀PkB + CE2 (6.43)

where P? and PR are associated with controllability and observability gramian sta-

tionarity, respectively.

Proof: (See Appendix 6B.)

Lemma 6.4 provides motivation for not setting the parameter P = 0 which might

otherwise seem the natural choice. The next theorem builds on the stationary condi-

tions of Lemma 6.4 by giving the corresponding solutions for the controllability and

observability gramians in terms of their matrix Riccati equations.
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Theorem 6.2 (Approximation gramian solutions)

The approximation system controllability and observability gramians fX and Y, re-

spectively, may be obtained as the destabilizing solutions of the following Riccati

equations:

'(A + E2 BT) +B) (AT + BTBE2) F-1 - XBTBX + IATA1 2

/32 12

= 0 (6.44)

(AT + E2cTc) r-']7 ± i'r-' (A + cTcE2) - ?r-I cTcr-1Zr + -ArA2 1A2F

= 0 (6.4.5)

Moreover, if B and C are square and nonsingular, then the degrees of freedom Pf,

and P j. may be obtained from the gramians fX and f" as:

P1 = CT-r'F (kt - 32r-1) B T (6.46)
o"1

Pi 1cr-I' (- V2) B-1 (6.47)

Proof: (See Appendix 6B.)

Note that X and Y' are computed using their respective destabilizing Riccati

solutions because they correspond to the antistable approximation. For the square

case, the symmetric Riccati equations (6.44) and (6.45) take on simpler forms which

permit direct access to the free parameter P. These are presented in the following

corollary.

Corollary 6.3 (Nonsymmetric Riccati equations)

For the n-state square case, the parameters Pg and PI. which attain stationarity for

the approximation system controllability and observability gramians Xý and Y', respec-

tively, may be obtained as the destabilizing solution of the following nonsymmetric

Riccati equations:

(i) ACP, + PRAB - PgRPg - RT = 0 (6.48)

(ii) AcPj, + P.AB - P.RPj, - RT = 0 (6.49)
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where AB = BF-'AB-' Ac = Cf-1ATC-1 R = alBF-1CT

Proof: (See Appendix 6B.)

Observe that for the two-state square case, both nonsymnetric Riccati equations

of Corollary 6.3 can be simplified to yield the quadratic form given in (6.40) and

thus, Corollary 6.3 can be viewed as the direct matrix extension of the quadratic

equation associated with Theorem 6.1. In addition, although Corollary 6.3 states

that two Riccati equations must be solved, only one Hamiltonian matrix must be

constructed as follows. Consider the matrix H given by:

H (Aia -R

RT -AC

and the similarity transformation T given by:

(B CF-1

Then, application of similarity transformation T to H yields:

T = F-"A -F-1CTCF-1
THT = BTB -A TF-1

which is Hamiltonian. Hence we can write the spectral decomposition of H as [Potter,

1966; MWrtensson, 1971]:

H =(AB -R)(Wii W12)(-A 0)(W11 W12) -1R T -Ac) =W21 W22) 0 A W2, W22

where the product on the right hand side describes the spectral decomposition of H

suitably partitioned so that all of the strictly positive eigenvalues are in A. Then,

the parameters P R and P; may be obtained as

P (t= 21 and P. = W22W 1

The two different approximations F*(s) and Fk.(s) based on the two Central

Glover Solutions using the parameters P. and Pk of Theorem 6.2, respectively, are
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given as

P -1 (A-r(f(-- 2 r-1)BTB) 'AT~ 1T B

- A21 0

acPfB+Cv 2  0 alP-

(6.50)

r-(A-CCr-I(IV-r)) CC rT-( ,cTP +r 2 BT)

(A~ -( Cr-3A,'V(aCp += ( , 'L) - r - A I 0
j9 21

C r- I k 0 Oa lP -

(6.51)

where (6.42) and (6.43) have been used in concert with (6.25) through (6.29) in

defining (Ag, Bf,) and (Ai., Ci-) respectively. Additionally, (e, 61- ) and

have been pulled out on either side to expose the internal dynamics.

Equipped with the approximation gramian solutions given by Theorem 6.2, it will

be shown how these may be used to construct maximizing vectors. Although state-

space representations for maximizing vectors have been given previously in [Tsai

et al., 1988; Limebeer et al.. 1989], the constructions given below show how to

choose the unique parameters Pf, Pi, and the associated unique Central Glover

Solutions which each produce an entirely stable projection. As will be shown in the

square case, either of these approximations given by (6.50) or (6.51) may be used

to construct an error system which is matched respectively to either the right or

left maximizing vector. Here "matched" means that the error system constructed

using Fg(s) will have the same controllability pair (A,, hk) as the right maximizing

vector while the error system based on F.,(s) will have the same observability pair
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(Ar., 0j.) as the left maximizing vector. This can be seen clearly in the next lemma

which defines the maximizing vectors and relates them to the approximation systems

Fg(s) and F,(s).

Lemma 6.5 (Maximizing vectors)

The unique, inner left and right maximizing vectors, labelled xT(s) and y(s) respec-

tively, are given by

xT(s) -- [ IB -1 B] 7 1 -1 (6.52)

-- A 12X B,
"A•'-•I;TI [H'y- IFA21 (.3

y(s) = Y] (6.53)

where the controllability and observability pairs (-A, -R) and (_AkTk) are given by

= 1- (A - r (k - 2 r_1) BTB) (6.54)

Bf = (.!A T 5cBT) B ) (6.55)

Ak = 7(A -1 (A (, - (6.56)

X is the approximation system controllability gramian given by (6.17), Y is the

approximation system observability gramian given by (6.18), and #3 is a scalar given

by (6.35). Moreover, for the n-state square case,

(Ag,,Bf) = (Af, B!) and (AkiCf) = (Ai, 00 (6.58)

Proof: (See Appendix 6B.)

Although the controllability and observability pairs are interchangeable for the

square case, they are not so in general and to maintain a clear delineation between

the maximizing vectors and the approximation systems, the maximizing vectors will

have an associated overbar while the approximation systems will continue to have

an associated tilde. Indeed, the maximizing vectors of Lemma 6.5 apply to the most

general systems as do their complementary parts given in the following lemma.
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Lemma 6.6 (Complementary maximizing vectors)

Given the maximizing vectors of Lemma 6.5, the complementary inner parts are given

by

T A fr B_] [Afc T](659
Xi(S) = - T - = -B (.

y±(s) = [ k., 1 =C i ] "L.7k F-fC] (6.60)

where X is the approximation system controllability gramian given by (6.17) and Y

is the approximation system observability gramian given by (6.18). Moreover, as with

the maximizing vectors of Lemma 6.5 in the n-state square case, the complementary

maximizing vectors have matched dynamics as given by (6.58).

Proof: (See Appendix 6B.)

Since maximizing vectors are unique [Young, 1983], the expressions above are sim-

ply alternative descriptions of those given previously in [Tsai et al., 1988; Limebeer

et al., 1989]. However, the treatment given here differs in that the resulting maxi-

mizing vector state-space formulae are closely related to the Central Clover Solution

state-space formulae and therefore, as presented below, facilitate both an understand-

ing of the projection operation and lead to significant algorithmic simplifications. In

particular, it will be shown how the state-space formulae for the maximizing vector

complements x, (s) and yj(s) facilitate the determination of matching error systems

which produce totally stable projections as outlined in the following theorem.

i
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Theorem 6.3 (Totally stable projections)

For the n-state square case, the two unique error systems Ge , (s) and G•,, (s) based

on the approximations Fg(s) [ A" 1 and Fj.(s) = given by the

solutions P* and PR corresponding to (6.44) and (6.45), respectively, yield the fol-

lowing totally stable, dimensionally-reduced projections:

G!S =yT(0)(-s)G(O)(s~x L(o)(-s= -Ak, -- aIB(I-•T )

G (s) 
-A- e ± C_1 olP -

(6.61)

G = () s)G(o(s)x (O)( s)= -A]G s = y2y -•o•- -( PP )Cr-1 oPei

(6.62)

Proof: (See Appendix 6B.)

Not only does Theorem 6.3 confirm the stable projection property of the uniquely

matched error systems G, (s) and G,,?(s), but it also yields fewer computations in

super-optimal algorithms as they would apply to square systems. First, the use of

either projection of Theorem 6.3 obviates the need to multiply the error system by

the complementary maximizing vectors and subsequently separate the product into

stable and antistable components since the projections given are both stable and

minimal. Furthermore, the minimality of these stable projections alleviates the com-

putationally burdensome chore of determining minimal realizations of the projected

systems. Finally, the stable projection property of Theorem 6.3 in concert with the

quadratic super-optimality result of Theorem 6.1 implies that super-optimality may

be achieved with one less Central Glover Solution iteration than required by previous

algorithms. These results are contained in the following super-optimal algorithm:
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Super-optimal Algorithm I (Square Case):
Given a stable n-state transfer function rmatrix G(M)(s), find the super-optimal exten-
sion F&o(s). In the following, superscripts are used to represent the iteration value.

Step 1. Initialization:

a. Compute P , and Pi. in accordance with Theorem 6.2.

b. Construct the matched Central Clover Solution F(°)(s) using either (6.50)
or (6.51) where the subscript "1" identifies which of the two approximation
systems will be constructed according to the following rule:

1I f(• if IIPk ll __ IP il

k if IIPAI > IIPAI

c. Construct the totally stable projection G(')(s) using Theorem 6.3.
d. Calculate and save the complementary maximizing vectors x-_T (0)(s) and

y2(0 )(s) using Lemma 6.6.

e. Set F.(.)(s)= F()I(s).

Step 2. Iteration: for i = 1 to n - 3 do the following:

a. For each iteration, compute the matched Central Glover Solution, the com-
plementary maximizing vectors, and the corresponding totally stable pro-
jection similar to above.

b. Accumulate the super-optimal extension as:

F(')(s) = F(8W11(s) + Y. )()FW (s) rJX T (k)()
so soLk=i-I

Step 3. Completion:

a. Construct the approximation J~n2)(s) based on the quadratic parameter
P,, given in Theorem 6.1.

b. Complete the overall super-optimal extension as:

F80() =F
3 )() +[ii~~J~)] (n- 2)(S) [ 3 xT (k)(S)

The totally stable projection property of Theorem 6.3 allowed the development of

the previous super-optimal algorithm and, although this algorithm takes advantage

of the stable projection property, further progress can be made in reducing the state
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inflation of the super-optimal solution. To see how further reduction results, consider

the following expansion of the super-optimal solution:

F.o(s) = F(°)(9)

"+ Y±(°)(s) F(l)(s) x±T (0)(S)

"+ Y (0)(s) y±(1)(s) F( 2)(s) x1 T (1)(S) xIT (0)(S)

+ y 1 (0)(s)... yj(f- 3)(s) F(n- 2 )(s) x±T (n-3)(S) ... x±T (0)(S) (6.63)

where n is the number of states in the square system G(s). For notational conve-

nience, the subscripts X( and k normally appended to the approximation system F(s)

have been dropped with the implicit understanding that the approximation system

F(s) is based on either Pf, or Pj.. Moreover, for increased notational compactness,

momentarily drop the dependence on frequency, s, and rewrite the above as:

F.. = F(O) + y.L (O) [F(') + y± I...

[F (n-3) _j YL(n-3) F (-2)x T (n-3)]..xT (1)l XT (0)

= S(O)[ISM1[... S~n- 3) IF (n-2)]I ..] (6.64)

where S(r)[•] is defined as:

s()• ] -= F(')(s) + y.(r)(S) [ J X.1 T (r)(S) (6.65)

A recursion similar to (6.64) was defined previously in [Limebeer et al., 1989], how-

ever, the recursion defined by (6.64) requires one less iteration and there are no

antistable terms. Clearly, the core term within the innermost square brackets fits a

pattern which matches the outer layers of the recursion; hence, a minimal realization

for the core term would greatly reduce the resulting state inflation in assembling the

super-optimal solution. The next lemma gives such a minimal realization for the

core term.
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Lemma 6.7 (Core term minimal realization)

An expression for the minimal realization for the core term of (6.64) based on Fj,(s)

is given by:

S(r) [F(r+1)(s)I = 0BykDij - T-Bf (6.66)

where for notational convenience, "Jg, 7Dg, -Bk, and -Dp are implicitly defined

by (6.59) and (6.60) as:

71 -B and T =BIL (6.67)

= r-ICT and D =k C1L (6.68)

Moreover, all "overbarred" quantities in (6.66) are those associated with the comple-

mentary maximizing vectors at the (r)th iteration level, while the "tilded" quantities

are those associated with the matched, projected approximation system at the (r + 1)

iteration level; there are two notable exceptions, B&') and &7'), associated with the
Y

(r)th iteration level and this is clearly indicated by the superscript. Finally, T solves

the following Sylvester equation:

A, T - T A'c + " 7g = 0 (6.69)

Proof: (See Appendix 6B.)

Although Lemma 6.7 was based on Fr.(s), an equally valid minimal core real-

ization based on Fg(s) results simply by exchanging the subscript Y for k in all

"tilded" terms. An immediate consequence of Lemma 6.7 and (6.64) is that the

total number of states in the super-optimal solution n Fa(,) is limited to be:
nf(t --1

n - n.,.,,) (n,, ) -(6.70)

where nd*,) represents the number of states in G(s). A further consequence of

Lemma 6.7 is the simplified and efficient super-optimal algorithm presented below:
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Super-optimal Algorithm IH (Square Case):
Given a stable n-state G(M)(s), find the super-optimal extension F.,(s). In the fol-
lowing, superscripts are used to represent the iteration value.

Step 1. Computation and Storage: for i = 0 to n - 2 do the following:

a. Calculate and save the complementary maximizing vectors x.LT (W)(s) and

YL~i(s).

b. Calculate and save 0 and &)

Step 2. Core System Computation:

a. Compute F,(- 2)(s) using Theorem 6.1.

Step 3. Super-Optimal Assimilation: for i = n - 3 down to 0 do the following:

a. Retrieve the complementary maximizing vectors x1T (0)(s) and
y Wi)(s) from storage.

b. Retrieve ki) and bM) from storage.Y Y
c. Solve Sylvester equation (6.69) for T.

d. Form the system SW [F(i+1)(s)] in accordance with Lemma 6.7.

Step 4. The super-optimal extension is given by F&,(s) = S° [F()(s)].

Before demonstrating the efficacy of the above algorithm, the unusual singu-

lar value total flatness property associated with the matched error systems will be

explored. With hindsight, it is seems quite remarkable that the matching prop-

erty of Gg(s) and G,(s) also affords singular value total flatness over all fre-

quencies. Thit, singular value total flatness property, henceforth referred to as

total flatness, differs from the normal definition of all-passness in that the both

parahermitian forms G'r(-s)G,,C(s) and Ge,,(s)G T (-s) do not lose their dy-

namic components [Ae, Be, Ce] through either unobservability or uncontrollability.

However, complete decoupling is achieved for the projected parahermitian forms

X±T(s)GT (-s)G,, (s)x±.(-s) and yi.T(-s)Gei,(s)G'T,(-s)y.L(s); this property per-

mits the proof of total flatness for the matched error systems G.,(s) and G,,(s).
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Theorem 6.4 (Singular value total flatness)

For the n-state square case, the error systems Ge*(s) and Gej,(s) based on the

aprxiaiosF jand Fi(s) = given by the solutions

Pg and PR, corresponding to (6.46) and (6.47) respectively, have constant singular

values given as

, [Ge•(jW)] = ,, G(i+l) [G,(jw)j a,- ai[(Pj Vuw, for i= 1,...,n - 1

(6.71)

arl [Ge, (jw)] 1a, a(i+i) [G,,.(jw)] 0 i O-i [Py?] V w, for i= 1,...,n - 1

(6.72)

where Ok (GI represents the kth singular value of matrix G.

Proof: (See Appendix 6B.)

Although the parameters Pg and -j. impose total flatness on the matched error

system singular values, the actual values of the singular values do not in general

attain their super-optimal values with the notable exception of the two-state square

case. For square systems with more than two states, the square case super-optimal

algorithm uses the matched systems based on Pk and Pk. to further minimize the

error system singular values. To illustrate this as well as the error system total

flatness property, consider the following example studied previously in [Limebeer

et al., 1989].

Example 6.2 The example given in [Lirnebeer et al., 1989] is a three-state square

system given by stable transfer function G(°)(s) which has the following minimal

realization:
-1 1 0120

0 -2 0 1 1 1
0 0 -3 2 2 1
1 -1 2 0 0 0

2 3 0 0 0 0

1 -5 -1 0 0 0

] ]l l I II Illl • .. . .
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with corresponding Hankel singular values:

4.6925 0 0
= 0 1.4132 0(0 •20 0 0.3097

The Central Glover Solution parameters of Theorem 6.2 are given as

A -( -0.3909 -6.8279
1.3264 -0.6070

B -( -0.9914 -0.0613

- 1.2633 -0.8364

S=(-0.5836 -1.2291

-2.0900 0.3614

Substitution of these values into (6.44) and (6.45) yields the approximation system

gramians from which PR and Pk can be computed using Theorem 6.2 as

9 = -0"0387 0.0060) and IIPRII = 0.2230
, = -0.1300 0.1790

= (-0.0299 -0.0054 and IPA, = 0.2226

S-0.1272 0.1821

Since IIPiII < IIPf II, parameter Pj, is used to construct the corresponding matrix U

defined by (6.24) and given as

-0.2465 -0.3536 -0.0598

Uj. -0.4312 -0.6365 -0.2188

0.2802 0.2219 0.3070

The resulting Central Glover Solution is given by the following state-space description

of Fj,(0)(s) E RH+-

1.7746 0.4110 0.0340 0.0506 0.0200

SA- 1 -0.0390 2.7557 0.0297 0.0429 0.0140

F•°)(s) ' -2.8136 -1.9598 1.1569 1.6592 0.2808
L -6.0081 -4.0641 2.0234 2.9866 1.0266

1.5604 1.4285 -1.3147 -1.0413 -1.4408
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As predicted by Theorem 6.4, the error system singular values are flat over all fre-

quency and are given as [c.f. (6.72)]

{, [GeJ] ,o, [Gi,.] 03 [Ge,] } = {4.6925,1.0443,0.12910} (6.73)

Further minimization of the error system singular values may be obtained using the

square case super-optimal algorithm which requires only one further Central Glover

Solution iteration. The stable projection to be submitted to the final Central Clover

Solution iteration is computed using (6.62) and is given as

GO')(s) = yjT 0, s)G()(s)x A ) -[ 2(- PPT)CF-1 B ]
-1.7720 0.0451 -0.9914 1.2633

-0.4108 -2.7582 -0.0613 -0.8364

-0.6344 -1.2341 -0.1402 -0.0251

-2.1816 0.3526 -0.5971 0.8547

Since the projected system is a two-state square system, the quadratic formula as-

sociated with Theorem 6.1 may be deployed for which Po = 0.1236 and for this,

the remaining s-numbers become s' = 1.0442 and s' = 0.12911. Thus, the super-

optimal s-numbers are given by

{s1,s•,s } = {4.6925,1.0442,0.12911} (6.74)

Interestingly, for this example near super-optimality was attained by giving up the

degrees of freedom in the Central Clover Solution to achieve observability gramian

stationarity in accordance with (6.45) of Theorem 6.2. In fact, the second and third

singular values2 of error system G., differed from the corresponding super-optimal

s-numbers by only 0.01%; moreover, the third singular value was actually less than

the third super-optimal s-number. Furthermore, the resulting approximation system

F,?(°)(s) is less complex than the super-optimal solution F&o(s) since the former re-

quires only two states as compared to the latter which requires three states. Finally,

2The first singular value equals the first s-number as a result of the Central Glover Solution.
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it should be noted that even for this small example, the super-optimal approxi-

mation obtained with the square case super-optimal algorithm based on both the

stable projection property of Theorem 6.3 and the quadratic super-optimal result of

Thecrem 6.1 resulted in processing 9 fewer states than would otherwise be required

if the returned projections were nonmrinimal with antistable and stable components.

6.4 Summary

This chapter presented a useful characterization of the degrees of freedom available

in the Hankel approximation as solved by the Central Glover Solution. Subsequently,

this characterization allowed the degrees of freedom to be expressed simply in terms

of the parameter P which could, in turn, be accessed through the predefined param-

eters A, B, and C. Initially, the degrees of freedom were deployed to attain super-

optimality in the two-state square-case by solving for the parameter P as the root of

a simple quadratic equation. Next, the degrees of freedom were used in the context

of larger square-case systems to attain approximation gramian stationarity. Here

it was pointed out that the degree of freedom parameter P which yielded gramian

stationarity could be obtained indirectly from a symmetric Riccati equation based on

either the controllability or the observability approximation system gramian. Alter-

natively, the degree of freedom parameter P which yielded gramian stationarity could

also be obtained directly from a nonsymmetric Riccati equation based on either the

controllability or the observability approximation system gramian. In the course of

using the degree of freedom parameter P, a new super-optimal algorithm emerged as

a natural by-product and was based on the matched error systems whose observabil-

ity or controllability dynamics matched those of either the left or right maximizing

vectors. By expressing the maximizing vectors and their orthogonal complements in

terms of the approximation system, we were able to obtain a minimal realization of

the completely stable projection and hence gain significant computational savings.

In addition to the completely stable projection property, the matched error systems
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also achieved singular value total flatness defined for the first time in this work.

Finally, further significant super-optimal simplifications were achieved through the

minimal core term expression of the super-optimal approximation. The efficacy and

strength of these results were demonstrated in two examples studied previously in

the literature [Young, 1986a; Tsai et al., 1988; Limebeer et al., 1989].
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6A Appendix

Proof of Lemma 6.2: (Central Glover Solution degrees of freedom)

Without loss of generality, U can be written as the product of two square full rank

matrices:

U =(Ci jL

Substitution of this into (6.5) yields

-B 1  -B, -B 1
a=• D=IIC111 =IB1

since 1IC111 = IIB,1I. The second requirement of U embodied in (6.6) together with

the above implies

UTU=(B-bT BT)(-1)=BTIl+BTB<I (6A.1)

If unknown B is written (without loss of generality) as

8=( P)(I

the pre- and post-multiplication of (6A.1) by h, and BT , respectively, implies p = 0

while pre- and post-multiplication of (6A.1) by h'L and bj T implies IIPiI _< 1. N

Proof of Lemma 6.3: (Hankel singular value property)

By the definitions of Lemma 6.1, the product fBT is given by

f)!)T = r- 1 (E2B2 + oCTU)(BT2 2 + a uTci)r-

= r-1 (-: 2 (A22 E2 + •AT), 2 + a1 ,2B 2 UTC2 + alC TUBT2T

+ac 'uuTc 2)r-1

where use of (6.9) has been made. Further rearrangement yields

bfT=F1 2 T aCTUB)B
LJ[ =r -1 [-(alA22 + E 2A22E2 -

-F22(arA 22 + E2A22E2 - orB 2 uTc)
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+a(L2  +T 2A 2 + 0,2CTUUT C2] -1 F'+,1 .A22E2 + E2A22) 1+

= r-1 [-rA 2 - 2ATr - a2C2TC 2 + 2CTUUT C2 ]r-

=- A(r 2 F-') - (2 2 F-')A.T _ a2Fr-'Cf(I - UUT)C 2 I"-

1A(E2F') + (EXF-')AT + f)fr + 0,2r-'c(I - UUT)CC217F 1  0

(6A.2)

By the definition for given in (6.27), J3fT may equally be written as

-'FA A12F + N 2BTBE 2 + , CTPBE 2 + OrI, 2 BTpTC + o12GTppT) F-

(6A.3)

Use of both (6A.3) and substitution of the definition for A given in (6.25) into (6A.2)

yields (after pre- and post-multiplication by F)

(A oICTpB) 2  TpTC)+ •(AT _Bp )

02 12 BB

+o 1CTpBE 2 + OaE2BTpTc - LYC'PP1 C ± acT(I- UuT)C2

A v_2 - 0!CTPBE2 + E 2 AT - JI'E2BTpTC

+1 FATA 1 2F + E2BTBE 2 + aICTPBE 2 + a, E2BTpTC + a2CTppTC

±u32 12 1 x CC C x~~iP T tCo cC2- a2-a10C ,2C2C,~pT I LTC C2
112 1 1 1 12

=0

where the structure of U given in (6.24) has been employed. Cancelling terms and

using the definition that C = rC2 and the identity Ijxcj'r = I - C,CT estab-

lishes (6.36). The proof for (6.37) begins with OTC and follows a similar structure

and is thus omitted. U
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6B Appendix

Proof of Theorem 6.1: (Quadratic super-optimality)

Using the definitions (6.25) through (6.31), the error system Ge(s) = G(s) - F(s)

satisfies the following equation:

-G(-s)G,(s) =

(-AT+ol BTpTC)F-l BT(I-PTP)B 0 -BT(I-PTP)

f3, T 0 r-1(A-a 1 CTPB) 'AT -(rCT+2T
B" A12 0 1 0( P(

(a, pT C+BE2)r- (I-pTp)B 0 pTp

where the norm preserving unitary matrix and its transpose have been

pulled out on the left and right respectively. Clearly, the total flatness of Ge(s) is

equivalent to the total flatness of:

G(S)=[ I B]

(-AT++a0 BTPTC)I-' BT(I-PTP)B 0 -BT(I-pTp)

0 F-i(A-u1 CTPB) 'A1T Fr-1(agCTp+E 2 BT)

A12 0 1 0

(OIPTC+BE2 )F-l (I-PTP)B 0 pTp

(6B.1)

In turn, this is equivalent to the condition:

G(s)y(s) = ory(s) (6B.2)

where a, denotes either of the two constant singular values of G(s) while y(s) denotes

the corresponding frequency dependent principal directions. Next write the following

power series expansions for G(s) and y(s)

00

G(s) = g, ,s' and y(s) = y-'
i=O i=0
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where go = V and 9i = CA'-113 V i > 1. Substitution of these into (6B.2) and

equating the coefficients of s-' for i = 0, 1, 2 yields the condition:

2A) 1) =0 (6B.3)

The detailed steps in the derivation of (6B.3) are lengthy but straightforward and

will be omitted. Finally, (6B.3) together with the bound IIPII _< 1 from (6.24) gives

the solution in (6.38); note that the solutions P = ±1 are ignored since these values

can easily be shown to yield the all-pass solution which is clearly not super-optimal.

To complete the proof, observe that the s-numbers may be obtained from the

super-optimal "D-matrix" which in this case is the matrix ojU, and given the struc-

ture of matrix U in (6.24), the super-optimal singular values are clearly given by

0a X {1, Pj}. U

Proof of Corollary 6.1: (2-State approximation gramian stationarity)

For the two-input/two-output square case, X and Y are scalars and satisfy (6.17)

and (6.18), respectively, so that

2A

0-r- { 1FA2A1 2F + E2BTBE2F + p +CTP BE2 + alE 2BTpTC -'
i ~2F-' (A - a, CTpB)

2A
E2 C _ A I+ 2c0,+2BTpTPB + oIBTpTCr,2 + CrIE2 CTPB

AA +r2F-1(A - OICTPB)

where the definitions for A, b, and C as given in (6.25) through (6.29) have been

employed. Use of Lemma 6.3 in conjunction with the fact that A, B, C and E2 are

scalars produces the following simplified forms of the approximation system gramians

and their derivatives with respect to P.

f= -C2 (1 - P2 ) + E2
17- and X, -2F g- 2BC 3 (p2 - P ( 2A ) + 1)

2r-1(A - aIPBC) 2r-'(A - aPBC) 2

Y= I'B 2(l-P 2 ) + E2r and = aB 3 C (p2 -p (e- ) + 1)
2r-'(A - a1PBC) 2r-'(A - aPBC) 2
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* Clearly, stationarity of the individual gramians occurs only when P satisfies the

quadratic equation given in (6.40). Detailed calculation of the derivative of the

approximation gramian product (•kL)' = X'Y + 9f" shows that the derivative of

S('Y) can only vanish for values of P which satisfy either (6.40) or the following

quadratic equation:

E (B C2 / +c
(I )BC +0 -1C2) (B+ 0 (61.4)

However, the discrirninant of this quadratic can be shown (through use of the iden-

tities (6.36) and (6.37)) to always be negative; hence the roots of (6B.4) are complex

and therefore inadmissible. Thus, X, Y, and XY share common stationary points,

and those are defined by (6.40); of these only one lies in the range -1 < P < 1,
and is given by the value of P,, of Theorem 6.1. Double differentiation of Xc and

Y readily establishes that at P,, both -xC and -f' and hence tfY go through a

minimum. U

Proof of Corollary 6.2: (Error system gramian trace stationarity)

Equation (6.41) follows directly from (6.16) and for the 2-state case yields:

Trace [XeYi = f_ - r + 2a'

Thus the stationary properties of the trace of the error system gramian product XeYe

are the same as those of the approximation system gramian product XcY. M

Proof of Lemma 6.4: (Approximation gramian stationarity)

Differentiation of (6.18) with respect to the (ij)th element of P yields:

+ L'A+ = - ((AT)'f, + kA, + (OT)I'i +±T

--oaBTejeTCr- - a, fICTejeTB

-o,,B ejeTOr (C 0 ) -A,

o, PB + CE 2

+o~iB~e~~ctT(ýi ) Or A~ 
T

+(-PrA21 aoBTpT + E 2 CT) ( T

~~~~~~~~E ... C i•mm m|mu| vmm ~iium mm
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4 = -::B T je:T (cr-1') - r (•r-ICT ) eeIB (

S+oB BejeT (oPB + CE2) + (a + BTpT 2 ajeeTB (6B.5)

where the definitions of A and 0 given by (6.25) and (6.29), respectively, have been

employed. From (6B.5) it is clear that the stationarity of Y (i.e. Y' = 0) yields the

following condition:

BTejeTN = -NTe eTB

where N (CF-1Y) - (acPB + CE2). This condition in turn implies that eitherI

BTe. 0 or NTe. = 0; however, the obvious assumption that B defined in (6.4) is

full rank implies that BTej : 0 and hence we conclude that NTej = 0. Moreover,

this must be true for all i and thus (6.43) must hold. Condition (6.43) is also sufficient

because it makes the right hand side of (6B.5) zero and thus yields:

A Tk+ k"A = 0

For the completely unstable approximation system state matrix A (i.e.

Real [Ai (A)] >0 V i), this equation has the unique solution k',= 0. U

Proof of Theorem 6.2: (Approximation gramian solutions)

Substitution of the definitions for A and B given by (6.25) and (6.27), respectively,

into (6.17) yields

F-'(A _ adCTPB)f( + fQ(AT -. a•BrpTc)r-I
1 T

+-TA2 A 1 2 + F-j(oiCTP + F12 BT)(aiPTC + BE 2)r-1  (6B.6)

= r-(A -_ OCT PB) (k - r-,) + (- r.2r-1) (AT - o1BTpTc)r-1
+-�-'~lCT(ppT - I)Cr' = 0 (6B.7)

where use of Lemma 6.3 has been made. Furthermore, by substitution of the specific

value P.* of P given in (6.42), the above reduces (after some cancellations) to

r-'A (k - E2r-,) + (f - r 2r-1) ATr-I

'-ar~r-I CT cr-I -2Fl-CTpPpTCF-I = 0 (6B.8)
L
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Finally, by using air-'cTpx = (X - ,2r-l)BT as implied by (6.42) in conjunction

with the Hankel singular value property given by (6.36), Riccati Equation (6.44) is

obtained. In the square case, C is generally invertible, thus, (6.42) may be solved

explicitly for Pf, yielding (6.46). The proof of Riccati Equation (6.45) is parallel and

therefore omitted.U

Proof of Corollary 6.3: (Nonsymmetric Riccati equations)

Using the Hankel singular value property of (6.37), Riccati Equation (6.45) may be

rewritten as:

A -Tr- (- ) + •- 2 r) F•A

- (V - •T) -, - (c - E2) - BTB 0

Next, pre- and post-multiply this equation by CA'- and A`CT respectively, to

obtain

cr-' (V - r) A-'CT + CA- (T-- r12r) r-ICT

-CAT-' (f - E 2 r) r-1 CT~p1 V-i Fu) A-'CT

-(a,CAT'IBT) (aBA-1CT)

-0 (6B.9)

Further simplification follows using the stationary condition of (6.43) which implies

cr-' (V- EF) =JPB

Using this in (6B.9) produces

PSMT + MPT - MpfTpMT - MMT =0 (613.10)

where M = (Oa CAT-'BT). Next, pre- and post-multiply this by M-' and MT-1,

respectively, to obtain

M-1 P, + PSTMr- -_PjPi - I = 0
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Subsequent pre-multiplication of this by RT, where R = orBBr'CT, yields

RTM-'P. + RTPTM; - - RTpYTp - RT = 0

Finally, it is straightforward to show that the symmetry of the observability gramian

I' implies the symmetry of the product PkR = RTPT where R is defined as

above. Using this and cancelling the corresponding terms in the product RTM-1

yields (6.49). The proof of (6.48) is similar and therefore omitted. U

Proof of Lemma 6.5: (Maximizing vectors)

The product yT(-s)y(s) is given as

y T (--s)y(s) --- 0 [ -- Y- '•T¢

where •f, and •f, are as given if (6.56) and (6.57) respectively. Subsequent appli-

cation of the state similarity transformation ( t P')yed

- 7T -2 -CTC

yT-sy~ 0 A y1ccatin o thestae siilaity ranformtio I yields

0 1
-- _Ty fT' + f'-Ap + -CT-? -CT 0 C T 0

y T(_-s )y(s) 0 -1 - - '

--T-A, 0 0

S 0 i -•-1  0

where + f-'+Ag + 1'+CC = 0 follows directly by substituting the definitions

for (A,,•,) to obtain Riccati Equation (6.45) of Theorem 6.2. This proves the

innerness of y(s); the innerness of x(s) follows similar lines but involves A•, B•,

and f( in place of -A,, 1,, and Y respectively. To prove the maximizing property,

it will be shown that

-7GT(-s)G.(s)x(-s) = x(-s) and 2 yT(-s)Ge(s)GT(-s) = y T(-s) (6B.11)

where G,(s) = G(s) - F(s). The definitions (6.25) through (6.31) yield:
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I T

S~=

(-AT+uiBTpTC)F-I BT(I-PTP)B 0 -BT(I-pTp)

0r-'F(A-I 1 CTPB) 'A F1(OICTp+E 2 BT) b(-B1

k -A12  0 1 0 ] .J
(aiPTC+BE2 )F-l (I-PTP)B 0 pTp

(613.12)

where the norm preserving unitary matrix ( and its transpose have been

pulled out on the left and right respectively. In order to simplify the notation, write

Gar(-s)G,(s) as

I GBT) T  A13,-B 1IC 1)

where the definitions of A, B, C, and V are implied from context by (613.12). Next,

write

- T IIAT

x(-s) (B A12 (6B.13)
/ qPTC + B 2 )F-1 -e 1  J

where el is the first standard basis vector and the definitions of A,, B=, CQ, and

D. are implied from context by (6B.13). With these definitions, the maximizing

property of (613. 11) implies the following

-A- o -A -B. A -',8D A - B.
r0 -[ A BC D

C.,, D, X D B" C, D,
1CA 1J1 x B C DC, VIZ]

Apply the state similarity transformation ( T ) to obtainApp0l1

A T+TA,,+BC, BD,±TB,]
C. D. 0 -Ax -_B. (6B.14)

C CT + DC, VDJ
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where state similarity transformation matrix T has the conformally partitioned form

T Q(). Equation (6B.14) is equivalent to the following four conditions:

(1) AT + TA, + BC., = 0 (6B.15)

(2) BD. + TB. = 0 (6B.16)

(3) CT+ DCZ = C, (6B.17)

(4) V)D, = D,, (6B.18)

Next, these four conditions will be proved in turn. Thus, with X being the control-

lability gramian of (6.17), choose

T= ~ )=( (6B.19N)

Condition 1: Substitution of the definitions of the relevant matrices of (6B.15)

yields

(i) -ATT, + BT(I PTp)BT2 + T - B - PP)BX = 0
(ii) A TT2 + T2-AT + -1ATA (O.CTp + E2BT)Bf( = 0

Clearly, (i) is solved by the choice of T1 = 0 and T2 = X given in (6B.19). Next,

to prove (ii), substitute the definitions for A and iA given in (6.25) and (6.54),

respectively, and subsequently carry out the multiplication of the third term to get

Fi1 (A - UOCTPB)T 2 + •-2 [Ir-- (A - r ( - F2r-) BT B)]T

+!A T A12 + O7PI -CTPBf( + E2 rl-BTBX = 0

With T2 = f( and further simplification, this results in the controllability gramian

Riccati equation (6.44) and thus Condition 1 has been met.

Condition 2: Substitution of the definitions of the relevant matrices of (6B.16)

yields

(i) O+ Tlf-' T =0

(ii) -IAT• + I T,2-'A Tr =0O
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Clearly, both equations are met by T1 = 0 and T2 = X as defined in (6B.19).

Condition 3: Substitution of the definitions of the relevant matrices of (6B.17)

yields

1 1 1
(i) 12T + A1 2 = A1 2

(ii) (OrpTC + BE 2)F-'T1 + (I - PTp)BT + pTpPB = BXC

Clearly, (i) is met by T1 = 0 and manipulation of (ii) yields

(I - PTp)BT2 = (I - PTP)BX

It is obvious that T2 = X satisfies this constraint, thus, the parameter PR combined

with the choice of T meets conditions 1 through 3.

Condition 4: Using the definitions for D and D, in (6B.18) produces

Ipr0p) (-el) =(-l

and equality is automatic.

Hence, all four conditions are satisfied by maximizing vector x(s). The proof of

the maximizing property for y(s) is similar and thus omitted. U

Proof of Lemma 6.6: (Complementary maximizing vectors)

Given the structure of y±(s) and x±(s) and the following equations

/3L T fI = I- _f3T b/ and C_ JL T i •C•T

the proof of innerness and orthogonality is direct and therefore omitted. Equality of

BT with X-'BD!A T and F-ICT with i,_?J.,TC follows from the approximation

gramian stationary conditions (6.42) and (6.43) in conjunction with the definitions

of B2 and Vj. in (6.55) and (6.57) respectively. U
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Proof of Theorem 6.3: (Totally stable projections)

The product of Gek(S)XI(-s) is given as

- 1 A _B -- •T o T

I

Next, apply the state similarity :trasfrato 2:; x•) t$obaJ

A 0 B T Bf1jT

0 0 -Ak _ 1 .1T

-C -- kf --bT-B UIUBjLT

A 0 AT + T-A +B- BB'T ] 21• •
'--T 0 0i

C-C• C2 -- Dk - Ck ortCiP• .

[ I-D -CX XT  6.0

where transformaat mtrix T is defined as T = () with the top row being an

Smr-dimensional zero row vector. Also, X• is the approximation system controllability

gramian which solves Riccati equation (6.44). The last step in (6B.20) is based on

the four conditions below which are proven in turn

S(1) AT + TA + B"B =0 (68.21)

S(2) B~j'-T  TX-T- xi•T = 0 (6B.22)

(3) Akk+X + k- T +B g=O0 (6B.23)

(4) 0 --T,[±r -0 (6B.24)

m~~ mm0m 
kbm mm 

T
----.m ,m ,m,,mmm
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Condition 1: Substitution of the relevant definitions of (6B.21) produces

-T -T
AT + TAf + BBfr

all A1 2  00)-+ (0) ±T)(3A12)

B,+ ) (_§ '61T (
A2 1 A22  I B2  BfC

(i A 2 A12  'A1

A21 A22 BT 1 ) T+

• 0

• or

(i) A12- A1212 0

( Ii) A22 + 7TX + T2 2 1+

Clearly the first equation is automatically satisfied. The algebra in proving the

second equation is long and tedious, and therefore, only an outline is sketched below.

A22 1 + T (, 2AT2 + oIA 21) A12 + BTBX

-A2 2  (AT BTB( - E 2 F-1) 0) rp-1 + -1 (2A T + oIA2,) A12 + BTBX

- A2 2 + ATF- + BTBE2F-I + 1- - 2 AT A12 + LrA21A12
2 12

Subsequently, use fl = r-2ij1 and the following identities which may be derived

from the definition of A given in (6.25) and the Central Clover Solution proper-

ties (6.7) through (6.12).

A l A2 -(A - 1 A12 ) (A22- 1A 21IAE 2)

2a1 1  2a11A A2 AI+A 2 1-- 2. E 2 +1alATA22 -- E• 2A21AT1

=B2 (I _ !bT !•)B2T

=-A22FI2 -- E2AT2

I0 " a( 2 A 2 1 A T + o IA 2 lA l2 1 •, 2 + O I 2A Tr A T a + 1 2A r T a 1 2 F I )
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Condition 2: This is immediate since both BT - B2j3T = 3-D f/ T and

T= (0) give

BbtT - T,' -b B2) 1 (0

Condition 3: Substitute the relevant definitions of (6B.23) to obtain

r-1(A- ,GcTP 2 B)f + 9 (Ar-'- TB(T r-))
h- _j3 3I -A12 =

(-!AT F-2 (aC T pg + E2B T )) ( 1 (-B T  f•r ) BX-

By carrying out the multiplication and cancelling terms, this reduces to Riccati

equation (6.44).

Condition 4: This condition holds automatically for the square case since/ 3 = Bg.

Thus, the fulfillment of all four conditions implies that a minimal realization of

the product Geg(s)x±(-s) is given by (6B.20). To obtain the overall projection,

premultiply (6B.20) by y±T(-s) to obtain the totally stable projection

rAT- CTk 1 r-C Tp~
• (C 2 T - -- T

Syl'(-s)Gý R(s)x±(--s) = 0 -Ag• BT

CF-1 C(l - r )2 X) alP

Next, with T = r(l- E2X), apply the state similarity transformation ( - I to\0 1

obtain

-T -T[-A¢ Cf,(C 2 -DkBTD - CkX) alY•lTr-cpk
[0T BT

0 A(-A
cr-, C(l - E2f() at Pk

-A7, 7T r( I-E2fc)-F(I- .2f•)-+G(FA- D B-Of ) al,'F-ICTp+(-E)B

0 -'•BT

Cr-I C(I-E29)-Cr-'r(I-E 2.) Z)P

| i [ m - mm • mm ~ m ~ mnm
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-A 0 l•r-ICTpt + r(I-2)BT

- A T BT
0 -Afc

cr-' 0 eoiP

_• _o•BT(I_ pBTp.) (6B.25)C r-1 aP X

where the final form given is the totally stable projection of (6.61). Clearly, the

derivation of (6B.25) was based on the fact that

Akr(i - >22X) - r(1 - D22 B)A ±T(C 2  ; Bg - CfX) = 0 (6B.26)

which is proven next. Use of the state-space formulae for Rg, Vg, C2, and Dk given

in (6.55), (6.57), and (6.50), respectively, yields

C 2  
- A,,B( - CMX)

= (-rFA2 , fr-'CT ) ( f) (I Aj) ( (X-> 2 )

1-rA21A ( _ - 1 ) + r-'lCTC(1- E22X)

Substitution of this together with the definitions of Ag, Ag and rfg of (6.56), (6.54),

and (6.57), respectively, into (6B.26) gives

(AT - r-'ICTC + 22 CTC)(I - ,2fX)

-r(1 -- E>2f)(ATr-7 - BTB(X - 22r-1))
1 T
1 Ar -A1 E-') + yr-ICTc(I - 2f0) = 0

or

(AT + r,2CTC)(I - E2f) - r(1 - E,2f)(ATr-I - BTB(X - ,2r-1'))

-- [A 21 AT'F(X - E>2-1) = 0

or

(ATF-I + >,Ccrcr-I)r( -rq 2) - r(1 - E2 2X)ATr-I

T 1
+ r(1 - >F,2)BTB - -[A,,A 2 , ( - ,r-1'= 0

T2
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Hence

(ATr-1 + E2 CTCr-l)r(I - F,2x) - M(1 - F,2X)ATr-I

+ (FBTB - E2 AB TB + 0,2BTB + E2A + ATE 2 + E2CTCE2 ) ( 2 - -)

=0

where Hankel singular value property (6.37) has been employed. Carrying out the

multiplications produces

AT + E,2cTc - ATE 2 " -- E2CTCE2 • - FAT-I + E2 FXATF-I + E2BTBX

"-E2 FXB T BX + E2 AX + ATE 2 X + E 2 cTCE 2 X - E2BTBE 2 F-

+E 2FIBTB t2 I - E2 - AT Fl -- _ E2 C, TCE•2-

- -o•(AT + E 2CTC)F- FATr-l + E2FXATF-l + E2BTB -

-E 2FkBTBX + E2AX - E +BTBE2 - +E2B -B 2A

where straightforward cancellations were employed along with the identity

(AT + E 2cTc)(I - r-') =(AT + -2cTC)1-(r- E1) = -ao(AT + E2 cTG)r-

Next, use -FATF-l = -E22ATF-l + a•ATF-l and regroup terms to obtain

_FE 2 Crc r- - -AATr-l

+E2 (A (ATF- I - BTB( - E 2 F-k)) + TE2(A + E 2 BTB)( - -

Finally, use (6.42) and (6.44) to transform the above into Riccati equation (6.36)

which is satisfied within the Central Clover Solution. This then confirms the validity

of the loss of observability in (6B.25) and thus the simplified form of the stable

S~projection given in (6.61). Since the approximation system is entirely antistable,
--T-Aw is entirely stable and thus the projected system is entirely stable. The proof

of (6.61) is analogous and therefore omitted. t

whc sstsidwti h eta lvr ouin hste ofrstevldt
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Proof of Lemma 6.7: (Core term minimal realization)

The complementary maximizing vector product y1 (-)(s)F(r-1)(s)x±_T (r)(s) is real-

ized as:

y(r)(s)F(r-i)(s)X.LT (r)(s) 0 Ak bkC9 bkDg
Y- sF0 0]

- Ck TA~ T~kbjý 77kbfg7Dfco 16to obtin

Apply the state-similarity transformation (0 2' ) to obtain:

yi (r)(s)F(r-1)(S)X T ()(s) =

A7f 0 0 BfigDkif - T,1 f - T2 BfgDg

o A f, bfkZf f3,•if
0 0

.k CkT2 +DCý - fT1 +DD,- D y D y,

(6B.27)

where T, and T2 solve the following Sylvester equations:

AfTi - T1 ,t( - T2 b!g Cg + BRfbk Cg = 0 (6B.28)

AfT2 - T2 A4 +Bgkf, = 0 (6B.29)

Note that (6B.29) must be solved prior to computing (6B.28) since T2 is required to

solve for T1. Next apply the state-similarity transformation 0 • ) to obtain:

Y (r)(s)F(r-)(s)x1 T (r)(s) =

Ak 0 0 BfDfD - T-Bf - T 2 AfDT

0 Agf, 0 BgTDf - T3Bg

o 0 -f -$f
-Ok(TI +T 2T3 ) Tggh

"7k Og T, +-DkCOf, -Tk (bT, + TT T 3)

(613.30)

where T3 solves the following Sylvester equation:

AkT 3 - T37.t + /f•k =0 (6B.31)
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Next, perform the state-similarity transformation to obtain:

y(r)(s)F(r-l)(S)XT (r)(S) =

-Alý 0 0 BTDD -T 1 -Br - T2B"Dg

0 Ai, 0 B-Dg - T3"B
o o J, T4T•

?Y1ý 77T 2 +T~~ Df OkIkfkf

(6B.32)

where the following three conditions have been used and will be subsequently justi-

fied:

(1) T47.kTZ' =7kf (6B.33)

(2) T4 = T± +T2 T3  (68.34)

(3) Difc + C1kT3 = 0 (6B.35)

Condition 1: Since the maximizing vectors Ag and Ai. share the same spec-

trum [Limebeer et al., 1989], there exists a similarity transformation T4 which satis-

fies (68.33), hence T4 is chosen to meet (6B.33).

Conditions 2 & 3: Post multiply (6B.29) by T3 and add this to (6B.28) to get:

A (Ti + T2T3) - TTz-A-•T4 - T2 (ApT, + Bgf) + Wk (bjrg + G•T 3) = 0

(6B.36)

where (68.33) has been used. Next, use (6B.31) and combine terms to obtain:

-Ak (T7 + T2T3) - (T7 + T2T3) TZ'-A T4 + Wfk (b i'Cf + Oc T3) = 0 (6B.37)

Since B11 is "tall" in the square case, first premultiply (6B.37) by its Moore-Penrose

pseudo-inverse B and next by its orthogonal complement -- to get the following

two conditions:

(i) Bt [•, (Ti + T2T3) - (Ti + T2T) TZ) '-Ak T4] + hl,'Cg + CO T3 =0 (6B.38)

(ii) Byl (-AI (T7 + T2T3) - (TI + T2TI) TZ'AkT4) = 0 (6B.39)
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Equation (ii) clearly implies that sufficiency is met by T4 = T1 + T2T3, hence (6B.34)

is satisfied. Using this result in (i) implies that Dj1.C + COT 3 = 0 and (6B.35) is

met. Thus (6B.32) is valid and its states may be combined to yield:

y. (r)(s)F(r-1)(s)x_.T (r)(s) =

A 0 BDD- T2BfD + T2T3Bg

0 Ak ,Dg - 1T (6B.40)

"7 ,CT 2 + DCk 77k Dbfj DD

where (6B.34) has been employed. By use of (6B.29), this may be put in the following

simpler form:

y±(r)(s)F(r-l)(S)X±T (r)(S) = 0 A, B! Dk - T37Bg (6B.41)

(6B.42)

Finally, by adding to this the approximation system F(r)(s) which is matched to

the left complementary maximizing vector observability pair (Aj,•), the result

of (6.66) is obtained. U

Proof of Theorem 6.4: (Singular value total flatness)

Equation (6B.20) gives:

T( T
XiTS)G~f(-s)Gef'(S)XL(-S)=

AX -M -011(1 - 1 12 )CTp ]
0 -- ft BT (6B.43)
B o'lpkTC(I- 22 p) •2P.P.T

where M is given by

12(X -( 2 r-I)rA2j2r(f -

+CTC - CTCE 2 X - fr2 cTc + fCE2 CTCE2X (6B.44)

Next, let T be given as

T = O,(l - CE2 )CTpgBT-' = (I - E 2)(Fc - F 2 ) (6B.45)
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where the equality OrcTp B- = (L'X - E2) has been used as implied by (6.42).

Note that T is symmetric as shown below

= rf - + fC -•rr• 2T (I - fC22)(rfX- 1 2) = C12f 1

= (Er- E2)(I- E2X)

Therefore, applying the state similarity transformation ( o ) to (6B.43) and

using the symmetry of T, it is deduced that

-i - AfT+ T-Af + M)I 01
xj(s)G T(-s)Go•(s)x±(-s) B 0 -T- I B ]

B 0 or a2P•Py

= aP fPT (6B.46)

The last step in (6B.46) is based on the fact that

"AfT+TA+• + M =0 (6B.47)

which is proven next. First, TAgT is given by

AkT =r- (A - (rx - E 2)BTB) aB-'pfTC(I- E2X)

r-i (QAB-'PXTc- -p-CTppTC) (I - 2fX) (6B.48)

where (6.42) was used and, hence

AfCT + CTC(I _- ,2X)
= -I (aiAB-'PTC - a2CTp~pTc) (I-- Y) + CTC(I -

= r- 1 (aAB-pXTC + E2CTC - Cr2eT(I + ppkT)c)(I-

SObserve that o2C T (I + xPkPT)c may be obtained from (6B.8). Using this and

continuing gives

A•T + cTc(I - • 2 f) = r-' (aOAB-1PtTc + E]cTc - OlCTPgBT-AT

±+crAB-1P2 Tc) (I - •)j = ir-' (E2CTC _- 0,iCTpRBT-AT) (I- T-))

mmmm~~~' (Im - E mml mf=0•
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Using this together with (6.37) yields

T + -TA- +M+CTC--CTC=

2rI-cTc - ( c2r-1 cTc2kX) - r-1 cTpxBT-AT

+,F-cp�,BT- AT- 2 ± cTcE2f- 2 (-1 cTcEF2-l)

-aliAB-ipTcF- ± Ti -Y,2AB-pTCF1 - )kr 2 A- - (ATy 2X

+(F~2 CTC 2 ) [a 1aX TB ±F -r1 A1

±(2rF-CTC 2.J) + I2 F-BTBk] + X12Arr-' + .(AT2r

+(X 2 .cTc, r-) + [fCBTBrr-] -Br-A1 2r2' - 2r,,r-Ar>2rr

_-r-r r-_ E 2r-lB BE-1 + (X>2 CcTck 2 ) - CTC

The terms in parentheses drop out while the terms in square brackets may be replaced

using (6.44) by

- fCTBTBfC + a1 Er-FBTB + a 2 B EBr r-PI E r-IBTBE2 r-1

= - Arr-l - r-'AfC +Er-'A r-
+ a0r-2AE 2F- + a4r-CTcF-

After making this substitution and using a1F-,CTpgBT- (X - ,2F-), it is true

that

T+ T + M + CTC _ CTC

-XAT + r 2F-'AT + fCATEJX - Z 2 r-1AT 2 f(

-AX( + AF12 -P + fCE 2A" -fXEAE,F-I

+E2 -CTC + CTCEr2- - cTc + 4a4r-,ccrT _ r-CTCrP-

+ 2,2r-'ATE,2 + XC, 2 AE2r-' - XE 2AX - XA T,2f

2 AfC- ar-'AX] + [TA EP r-I - a'ATr-I]

-r-,AEr-- r-,AFr- [ -[r 2r-ATr- - + 2 Pr-ATr-]

Each term in square brackets may be simplified using r = E2 - a~J. Using this and
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cancelling terms leaves us with

hT±i4+M+CTCCCqfT + TAT M+C( CTC

= p-1CTC + CTCEFl CT 2T ±TF -lTC-= ~-cc+cc~ -1 _ cTc + 0,4r-1cc- _ r.•-,1 crr-

= -(I- r2F-1)cTC(I - Ir'') + Fr-ICTCr-G

= r-' (-(1 - y2 )cTC(r - ,) + •cGc) r-'

= r-' + CTCr-' - o

r-1-r

Thus it has been shown that 4gT + TAg + M - 0 and (6B.46) is true. Note that

what has just been shown implies the following

X.L (s)Gf(-s)Ge*'(S)XIL(S) = at 'fp

= 3aj [G,,(s)x(-s)] =aj [,Pl = a x aj [P] j=,...,n-1

In order to conclude that the original (unprojected) error system Ge, (s) has singular

value total flatness, it only needs to be pointed out that IIGe, (s)x(-s)I.o = ot'. This

together with what has just been shown confirms (6.71) since the inner operator

comprising the maximizing vector and its complement are norm-preserving. The

proof of (6.72) is parallel and therefore omitted. U

I



Chapter 7

Using the degrees of freedom in the

general case

7.1 Introduction

The previous chapter and examples demonstrated how characterizing the degrees of

freedom in the H' problem enabled their fruitful use in the context of square case

systems. Not only did the matching error systems acquire the total flatness property,

but they also yielded completely stable projections which facilitated the development

of a computationally efficient super-optimal algorithm. The purpose of this chapter

is to extend these results to the general class of stable transfer function matrices in

which the number of states differs from the number of inputs and outputs, hereafter

referred to as the nonsquare case. This general class can be subdivided into the

following two types:

Type I: The number of states, n, is less than or equal to the number of inputs
and outputs, m and p, respectively. Thus, n < m and m = p.

Type II: The number of states, n, is greater than the number of inputs and out-
puts, m and p, respectively. Thus, n > m and m = p.

For Type I systems, the stable projection property and the total singular

value flatness property can be easily retrieved by simply introducing uncontrol-

lable/unobservable, stable states. In contrast, for Type II systems there are not

enough degrees of freedom in the Central Glover Solution to fully achieve these

properties. Unlike Type I systems, Type II systems cannot be "squared-up" by

introducing "null" inputs and outputs since this would create singular B and C

136
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matrices as given by (6.33) and (6.34), respectively. Moreover, since the dimensions

of the free parameter P are (m - 1) x (p - 1), increasing the number of inputs by

appending zero columns to B, for instance, is tantamount to creating nonexistent

degrees of freedom. Thus, Type II systems require the development of alternative

methods to exploit the limited degrees of freedom available to either minimize the

degree of the projected antistable component or achieve singular value near flatness

the former of which is examined next.

7.2 Minimal antistable projection

Indeed, the maximizing vectors and their complements as given in Lemma 6.5 and

Lemma 6.6, respectively, apply for the general case (see proofs contained in Ap-

pendix 61B); however, the construction of a matched error system which leads to a

completely stable projection relies on there being sufficient degrees of freedom in the

Central Clover Solution. Previously, the degrees of freedom contained in P weregiven

up in order to match either the Central Glover Solution controllability pair (At, Bx)

with the right complementary maximizing vector controllability pair (AfBR) or,

alternatively, the Central Clover Solution observability pair (Ak, C,?) with the left

complementary maximizing vector observability pair (Ap,p). In lieu of having

sufficient degrees of freedom to completely match the complementary maximizing

vectors, it is possible to give up the available degrees of freedom to match a maximal

part of one of the complementary maximizing vectors with a view toward minimizing

* the projected antistable component. The following theorem fulfills this objective:

Theorem 7.1 (Minimal antistable projection)

For Type II systems, the Central Glover Solution degrees of freedom can be used to

remove (m - 1) states of the antistable projection and the parameters P. and Pk

used to achieve this are given by

Pt = (VZrF-1CT)-' i.Zt (7.1)

P1, = Z5,Wf, (BW)W ' (7.2)
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where Zk and Z4 are given as

zf, =1(f( - r,2r-I) BT and z.. cr-1 1"2r)

Furthermore, Va contains (m - 1) rows of the left eigenvector matrix of Az, and

W-. contains (m - 1) columns of the right eigenvector matrix of A,, where Az,

and A,, are given as

Az" = r'F1 A-o 1 FZCB = (W. W• W.A) 0Ao 0 Vff (7.3)

\0 A 0o \cVA =r-'A - alF-CTZ• = Y • W o• A oa Vo-6

where the overbarred subscripts "Z and "6 identify the parts of the spectral decomposi-

tions which are decoupled through uncontrollability and unobservability, respectively.

Using this notation, the minimal realizations of the antistable projections are given

by

Q =) [ 0A W)

V ý 'kA kW c t o ', • C ( Z k - r - l C r p -)
^ILTC C• c r- C-L, 0

(7.5)

Q()(s))= A B..]

[W V' - ](7.6)
[(Zi, - PB) Wok 0 J

and the minimal realizations of the stable projections are given by:

G(c)(s) = [_] F(- ) + ail>C- p* + (7.7)

_,-T +T
G~(s) = Bc- r- 78

cr- (r-YE2 r-1) + oriPSBf( + C. Lt o 1Pf, (78
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where Lf and Lk satisfy the following general Sylvester equations

I --T T -
AkLg + L•kA,,x +-JYCWC.•, = 0

-T -AkL + Lk•,A + aiV•Bi' Bg = 0

Proof: First note that of the four conditions given in (6B.21) through (6B.24), the

first three carry over to the nonsquare case so that (6B.20) can be written as

o; f L
T  - BgB3J. T 1

Gef(s)xL(-s) = 0C- Cj31!LT

C C 2 - DfBfc- CfX ao

The inability to fulfill the fourth condition by making the antistable components in

A,• uncontrollable stems from the insufficient degrees of freedom in the parameter

P.. This can be seen by expressing BkBt T and k7 hT as follows

B = P-CTP + E2F-lBT and f3 -• .B T = alZk + E2F-'BT

where Z. = c (- E 2 r-1) BT as defined in Theorem 7.1. These alternative forms

underscore the intrinsic problem that there are not enough degrees of freedom in Pk

to equate F-1 CT P, with Zk. Combining the above terms and simplifying gives

Af 0 0, (r-ICTp _- Zk)
-RT

AAz - BzB 0 Bz]
_7T

of C-DtT- Of f X ,1B0BtT

where Bzk = al (-•CTpj - ZI) and use has been made of the definitions

of A and Az, given in (6.25) and (7.3) respectively. Now, observe that

(A z - BzR B, Bzg) may be interpreted as a closed-loop state feedback controllabil-

:ty pair with state feedback gain matrix B. The corresponding open-loop controllabil-

ity pair is (Azk, B,..) both terms of which are known independent of the parameter
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P,. This, together with the fact that open-loop controllability characteristics are

unaltered under state-feedback, implies that Pg can be chosen to decouple (m - 1)

of the antistable states contained in A* = A,- Bz, B. In particular, partition the

spectral decomposition of Azk as

Az, = (Wz Wc• ) ACz ( )
where A-E contains (m - 1) eigenvalues of Azx. The (m - 1) eigenvalues can always

be chosen so that V-F-1CT is full rank. Thus, decoupling the (m - 1) eigenvalues

contained in Az requires

VzBzg =,V (F-ICTpf -z_ )=O p= =(V F-1CT)-' V•z

For this value of Pg, the minimal realization of Ge,?(s)x±(-s) is given by

C,?W 0 V,:)(BZ, 1
Gef, (S)xI(-s) = 0 2 -AB

-f W' C2 - bx -b' ;R a 1k OPt

and the overall projection yLT(-s)G,,,(s)x±(-s) is given by

Y. (0 V19 Ag w.,? 0 VCB?
x -T

cr-A T 6,k Wý 61T(c -BT•-b ap, P

Apply the state similarity transformation 0 ) and remove the unob-

0 0

servable states as was done previously in (6B.25) to obtain

[ -'4a -,C•CWC) ['-'C
T P•+r(i-Er2 f)B T

y.L(-s)Gk,(S)X.L(-S) = V w[ , Ajwc,* V.fBZ .

Finally, performing the state similarity transformation yields the follow-
(0 1

ing general Lyapunov equation whose solution decouples the stable and antistable

,,,, , , L.u mnnn u nl m m mn
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projections.
•TL + Lk (VcKAfwCR) +-7TOwCW = 0

The resulting non-decoupled terms form the minimal antistable and stable projec-

tions given in (7.5) and (7.7) respectively. The proof of (7.2) is analogous and

therefore omitted. U

Remark 7.1 In Theorem 7.1, any (m - 1) subset of the entire set of (n- 1) unstable

eigenvalues can be eliminated. One possible strategy could involve removing (m - 1)

of the most unstable eigenvalues (i.e. those (m - 1) eigenvalues with the largest

positive real parts). Another strategy might involve removing (m - 1) of the unstable

eigenvalues with the largest residues.

The descriptions of the complementary maximizing vector projections in The-

orem 7.1 are quite detailed; however, the resultant computational savings are sig-

nificant and therefore worthwhile. In particular, the projections given are minimal

which in turn removes the computationally burdensome chore of determining mini-

mal realizations of the projections. These computational improvements are included

in the nonsquare super-optimal algorithm presented below:

Super-optimal Algorithm HI (Nonsquare Case):
Given a stable n-state, m-input/m-output transfer function matrix G(M)(s), find the
super-optimal extension F&,(s). In the following, superscripts are used to represent
the iteration value.

Step 1. Initialization:

a. Compute P* and Pj, in accordance with Theorem 7.1.

b. Construct the Central Glover Solution F/(0)(s) using Lemma 6.1 where the
subscript "I" identifies which of the two approximation systems will be
constructed according to the following rule:

I = if IIP .* I < IIP SII
kY if Wixll > Ipi•Il

c. Construct the stable projection G•l)(s) and the antistable projection Q(1)(s)
using Theorem 7.1.

1.
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d. Calculate and save the complementary maximizing vectors x_±T(o)(s) and
y.(O)(s) using Lemma 6.6.

e. Set F(°0)(s)= F-(°(s).

Step 2. Iteration: for i 1 to n - 1 do the following:

a. For each iteration, compute the Central Glover Solution, the complementary

maximizing vectors, and the corresponding projections similar to above.

b. Accumulate the super-optimal extension as:

F.,(.) (s) - )+ ii y(i)(s) [F.()(s) + QO)G()] [ii "T (k)(s)
L j=0 k=i-I

Prior to demonstrating the efficacy of this algorithm by way of example, the

square case matched error system total flatness property will be extended to the

nonsquare case.

7.3 Singular value near flatness

Unlike the square case in which the matched error systems possess both totally

stable projections and totally flat singular values, the "near matched" error systems,

resulting from minimizing the antistable components as given in Theorem 7.1, do not

generally possess total flatness but can be steered toward "near flatness." A rigorous

definition of near flatness remains illusory even though it is relatively easy to identify

through numerical observation. In the context of this section, near flatness alludes to

the situation that would arise from using solutions for the parameter P obtained from

the approximation gramian stationary conditions (6.42) and (6.43). For the general

nonsquare case, (6.42) and (6.43) in general will not admit a solution; therefore, the

near flatness solutions emerge as solutions of necessary (but not sufficient) conditions

for stationarity and hence flatness. Because of this difficulty with an appropriate

definition of near flatness, the result below is a conjecture and not a theorem.
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Conjecture 7.1 (Singular Value Near Total Flatness) For the general case,

the parameters Pg and P.? which give singular value near flatness may be derived

from the destabilizing solutions of the following nonsymmetric Riccati equations:

(Z) MT-lRPg + PXM-lRT - PgRPg - RT 0 (7.9)

(ii) RTM-ipY' + PYRMT-1 - Pj.RPj- - RT 0 (7.10)

where M and R are defined as:

M =o 1CAT-'BT (7.11)

R = a 1BFl-CT (7.12)

An illustration of the error system singular value near flatness property as well

as the strength of the super-optimal computational improvements afforded by The-

orem 7.1 are demonstrated in the following example.

Example 7.1 Consider the following minimal realization of a three-state, two-input,

two-output stable transfer function matrix G(°)(s):

-1 0 0 3 -3

0 -2 0 -1 5

G(°)(s)= 0 0 -3 2 3
1 2 1 0 0

3 1 -1 0 0

with Ilankel singular values given as {5.5741,2.1330,0.1299). Based on the corre-

sponding balanced realization, the Central Glover Solution parameters A, B, and C

are calculated as:

1-78.6508 -19.1270)
A = ( - B = (2.9221 0.6378) C = (3.0885 -0.0092)

0.0935 -90.6818

In the context of the nonsquare super-optimal algorithm, the problem dimension

dictates two Central Glover Solution iterations and after the first iteration, the an-

tistable and stable projections corresponding to the parameter P, are given by
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Theorem 7.1 as:

Q• 9 (s) = A•,[BU1]= [ 2.3558 0.0256

C 0 0 0.6383 0.0000[ [A(') B ] -2.2798 0.0013 -78.9181

-Cv) D() ]=[ -0.6654 -2.9203 -18.8504

-0.1165 0.0003 -1.7964

where the value of the parameter Pf is given by Pf = -0.3615. As predicted by

Theorem 7.1, (m-1) = 1 state has been eliminated from antistable projection Q()(s)

and, in addition, Theorem 7.1 ensured the minimality of the projections Q(O)(s) and

G(!)(s). Upon obtaining the final Central Glover Solution and assembling the super-

optimal solution F.o(s), the resulting s-numbers are computed to be s' = 5.5741

and s' = 2.015972.

In comparison to the super-optimal solution, consider the near flatness results

given by Conjecture 7.1 which requires only a single Central Glover Solution iteration.

Since the system for this example has two inputs and two outputs, the parameters

P. and P,, are equal scalars and, by using Conjecture 7.1, are given as Pk = Pk. =

-0.3616. As predicted by Conjecture 7.1, the second error system singular value

does exhibit near flatness as depicted in Fig. 7.1. (The first singular value is not

-1

-2

10-1 100 101 102

Figure 7.1: Comparison of normalized near flat second singular value (solid line)
with normalized super-optimal value (dashed line). Note that the vertical units are
measured in increments of 10-.

shown since it is already all-pass by the Central Glover Solution.) Since the super-

,,, ______________________
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optimal value s- is completely flat, the frequency plots of both s' and a2 (Gex(jw)]

have been normalized by subtracting s' = 2.015972; hence, the normalized second

s-number s' = 0 is plotted as the dashed line and the normalized near flat second

singular value a2 [Ge, (jw)] is plotted as the solid line. From this plot it can be seen

that the near flat second singular value has the same initial and final value. In fact,

the values at d.c. and at infinity are equivalent and are given by

o0, [G,, (j0)] = 0`2 [Ge ( )1 = a, x JI= 2.015852

Although the near flat second singular value deviates from its initial and final values

and indeed exceeds the super-optimal value over the frequency range 11'4 to 51--

the excess is never greater than 1.2 x 10' (0.006%). Moreover, the near flat second

singular value is actually less than the super-optimal value over the converse range of

frequencies and this is achieved with one less state than required by the super-optimal

solution. Hence, for this example, giving up the Central Clover Solution degrees of

freedom to achieve near flatness virtually obviates the more complex super-optimal

solution.

7.4 Super-optimization and early termination

The preceding results based on the solutions P* and PR given in (7.9) and (7.10),

respectively, imply that near super-optimality can be attained without fully com-

pleting the super-optimal algorithm; this process is referred to as early termination.

Presently, it is of interest to investigate how the solutions of Conjecture 7.1 can be

employed in super-optimization since (m - 1) of the corresponding error system sin-

gular values are manipulated simultaneously. The explicit algorithm based on these

solutions is not given here; however, it is straightforward to modify Super-optimal

Algorithm III presented earlier to accommodate Pt and PV. of Conjecture 7.1. Al-

though the resulting super-optimal algorithm converges correctly to the final super-

optimal solution F&,(s), some examples have demonstrated that H' optimality can

be lost during intervening super-optimization stages, however, the final stage invari-

l II i a i a • .. .
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ably recovers both H' optimality and super-optimality. The intermediate loss of

optimality can be traced to violations of the norm constraint on the parameter P

stated in (6.24) and repeated here for convenience:

Up < 1 (7.13)

The reason this norm constraint cannot always be met is that neither of the non-

symmetric Riccati equations given in (7.9) and (7.10) imposes a priori the neces-

sary upper bound on Wp. The only notable exception occurs when the parameter

P is scalar; in this case, the parameter P can be found as the root of the scalar

quadratic equation (6.40) which was shown previously to contain a unique root P

given by (6.38) in the open interval -1 < P < 1. Finally, since the super-optimal

algorithm terminates after an iteration for which P is scalar, this establishes that

either (7.9) or (7.10) can be employed successfully in the context of a super-optimal

algorithm to achieve the overall super-optimal extension. An illustration of this

observation is given in the hypothetical example below.

For simplicity, consider a 3-state square case system G(°)(s) with nonrepeated,

ordered Hankel singular values a, > a2 > a3. Additionally, suppose that the approx-

imation system Ff(°)(s) is computed from the 2 x 2 parameter Pg which has a norm

in excess of unity (i.e. p R > 1). In this case, IIG(0 )(s) - FR(°)(s)I[oo > a, and Hg°

optimality is lost. However, consider the following super-optimal diagonalization:

IIG(°)(s) - Fg(°)(s)II. =

y.L T (0)(-S) 10

0 ~ G(0)) J (G0() -F(o() 1)-s 1o(s00

0 IIo)Q (s) 0>

Here, Gg (s) and Q()(s) are the stable and antistable projections, respectively.

Clearly, the Hankel norm of the stable projection G')(s) is less than a1 since the

maximizing/complementary maximizing vectors are norm preserving. Thus, the loss

of optimality arises from the antistable projection Q()(s); however, this term will
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be absorbed in the next optimal approximation and will no longer adversely affect

overall optimality. In particular, denote the approximation based on the stable

projection G0)(s) as Fp) (s) where P• is the scalar parameter derived from (6.38)
X

and satisfies ?p-. < 1. Finally, since the optimal approximation F(!) (s) accounts for
x X

the antistable term Q(1)(s), overall optimality is recovered.

The previous example can be easily generalized to confirm that intermediate

violations of constraint (7.13) for P non-scalar have no impact on the final super-

optimal extension F8o(s) since the antistable approximation system Q(s) must be the

source of any intermediate loss of optimality. With subsequent iterations however,

only the stable projections determine the Hankel norm, hence successive applications

of the Central Glover Solution in combination with the aforementioned control over

-p for P scalar ensure that the final super-optimal solution is correct.

Even though Pk and PR as defined by (7.9) and (7.10) can be used in generating

the unique super-optimal solution, it is desirable to maintain H' optimality dur-

ing all super-optimal algorithmic stages in order to permit early termination after

any iteration. In Example 6.2, for instance, early termination of the super-optimal

algorithm after one iteration resulted in virtual super-optimality (to within 0.01%)

as confirmed by comparing the singular values given in (6.73) with the s-numbers

given in (6.74). Furthermore, the possibility of early termination in that example

came about from having one of the parameters satisfy norm constraint (7.13), namely

P• = 0.2226.

The feasibility of early termination is contingent upon the development of a

method of ensuring that constraint (7.13) is satisfied during all stages of super-

optimization. The remainder of the work presented in this chapter fulfills this objec-

tive for the general nonsquare case with a view toward obtaining the degree of free-

dom parameter P in a manner which not only satisfies the necessary approximation

gramian stationary conditions, but permits early termination as well. In particular,

this work merges the controllability and observability gramian stationary conditions

with their respective Riccati equations in a way which generates two related Riccati
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equations that share a unique, common solution P. It will be seen that the common

solution P not only ensures HI optimality during all super-optimization stages, but

it also supplants the previous Riccati solution procedure which forms the solution

from the partitioned eigenvectors of the Hamiltonian matrix. Before this however,

the following lemma merges the gramian stationary conditions (6.42) and (6.43) with

their respective Riccati equations (6.44) and (6.45).

Lemma 7.1 (Composite Riccati equation construction and solution)

The gramian stationary conditions (6.42) and (6.43) in conjunction with their re-

spective Riccati equations (6.44) and (6.45) have the following modified respective

forms:

PMTM + MTpM - MTpMPMTM - MTM = 0 (7.14)

PMMT + MPMT - M TP MpMT - MMT = 0 (7.15)

for which the unique solution PM may be retrieved from the destabilizing solution of

the following composite Riccati equation:

SP + PS- PP- I = 0 (7.16)

where S is defined by either of the following equations along with the corresponding

parameter PM:

S = XEX* PM = YX*P (7.17)

S = YHY* => PM = PYX* (7.18)

Here, X and Y are the principal directions derived from the singular value decom-

position of the inverse of M:

M` = XEY* (7.19)

where M is defined by (7.11).

Proof: Equation (7.15) is identical to (6B.10) which was derived as a modified

form of Riccati equation (6.45) in the proof of Corollary 6.3. Equation (7.14) can
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be derived in a similar manner and the details will be excluded here. In order to

cast (7.14) in the form of (7.16), first pre- and post-multiply (7.14) by MT-1 and

M- 1 , respectively, and substitute the singular value decomposition of M` to obtain:

SYX'P , T+ PXEY* - P -P 1 T I = 0

Pre- and post-multiplication of this equation by XY* and YX*, respectively, yields

Riccati equation (7.16) with the corresponding definitions of S and P given by (7.17).

The proof that (7.15) leads to (7.16) with the corresponding definitions of S and

given by (7.18) is similar and therefore omitted. U

The special form of the composite Riccati equation given in (7.16) possesses

special properties which the next lemma defines. In particular, the following lemma

bounds the gain of the singular values of the corresponding error system GeM (s) both

by placing a lower bound on g = gM-i which in turn places an upper bound on

-p = W'p. Furthermore, these results yield the cross-MPDA property between P and

S (or equivalently between P, and MT).

Lemma 7.2 (Lower bound on -s, upper bound on Wp and cross-MPDA of

S and P)

Given the parameters S and P defined in either (7.17) or (7.18) which form the

composite Riccati equation (7.16), the following conditions hold:

a~gS= OrM_,]> 1(7.20)

ap" = arP = gS- - - 1 _i< 1 (7.21)

zs II and Ts IIt' (7.22)

Proof: Define the following symmetric singular value decompositions:

=X4EpXý and S = XsEsX;

Pre- and post-multiply (7.16) by X; and Xp respectively to obtain:

(X;Xsr'sXsXP) EP + EP (X;XsEsXsXp) - El - I = 0 (7.23)
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However, (7.23) implies that (XXsEsX;Xt) is a diagonal matrix; define this

matrix as ts = (XýXsEsX;Xp)" Clearly, 2s contains the singular values of ES

in some unknown order. Using the definition of Es, (7.23) can be rewritten as:

2Esj,- - I = 0

which in turn implies

(at)' - 2 (aS)j (at)i + 1 = 0 (7.24)

for the corresponding (i, j) pairings. Using (7.24), any ith singular value of P can be

expressed as:
,= (S); ±+ - 1 (7.25)

Equation (7.25), however, must be true for all j and because the singular values of P

are real by definition, the discriminant of (7.25) yields the lower bound on is given

in (7.20). Using (7.24), the largest singular value of P is given by:

Y= (UP)l = (as)k ± (as)k 1 (7.26)

where (as)k is the first diagonal element of ts corresponding to the largest singular

value of P. The only remaining question is whether (7.26) is computed using the

plus or minus sign and this will be determined in the following treatment. The desta-

bilizing solution P can be formed by partioning the following Hamiltonian matrix

as:

Lf _ (S 1)=(, WVi 2 ) (Ap 0_OW 1

I -S \W 21 W22 ] 0 -Ar WW2 1 W22 ]I

where Ap contains the strictly positive eigenvalues of H. It follows from this parti-

tioning that:

SW11 - W12 = W11AP

After post-multiplication by (W 11)-1 this becomes:

S - W12 (W 1 1)- = S - P = W11A,(W 1,)- (7.27)
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where the equality P = W12 (W f)-1 defines the destabilizing solution. Pre- and

post-multiplication of (7.27) by Xj and X1 , respectively yields:

S- = (X ýW11) Ap (X ýW 11)

This equation confirms that ES - Ep must be positive definite in order for P to

correspond to the destabilizing solution. Using this fact in conjunction with (7.26),

it follows that:

T I-1 > 0 (7.28)

This result in conjunction with (7.20) confirms that the negative sign is used in (7.26).

This, in turn, implies that the largest singular value of P corresponds to the smallest

singular value of S and therefore (aS)k = as.. Furthermore, this gives the constraint

on the norm of P given in (7.21). In addition, when (7.25) is used with the minus

sign only and coupled with the realization that (as). < 1 V j it follows that 'p

is uniquely associated with IS; hence, the cross-MPDA property of (7.22) follows

directly. U

The special property (7.21) identified in Lemma 7.2 yields the desired con-

straint (7.13); therefore, by employing the parameter P, derived from (7.17) [or

identically (7.18)] early termination can be accomplished while ensuring H' op-

timality during all stages of super-optimization. This fundamental result, which

derives from Riccati equation (7.16), is improved upon in the following theorem

which allows the direct solution of the unique parameter P. without recourse to the

standard Riccati solution procedure as would otherwise be required by Lemma 7.1.

---I-=m mm ~ •mm m --
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Theorem 7.2 (Closed form Riccati solution)

The unique parameter PM which solves both of the Riccati equations given in (7.14)

and (7.15), respectively is given by:

PM MT' (I (1 MTM)L) (7.29)

-MMT)) MT-1 (7.30)

where M is defined by (7.11).

Proof: Since SP has been shown to be symmetric in Lemma 7.2, these definitions

imply that MPI T = MM and thus (7.14) can be rewritten as:
T 2

2MTpM - (MTPM) - MTM = 0 (7.31)

Define the following:

U=I-MTM (7.32)

and substitute (7.29) in (7.31) to obtain:

2(I-U')-(I-U½) 2 -(I-U) = (I-U½)(2I-I+U½)-(I-U)

0

This shows sufficiency. Necessity comes from the uniqueness of the Riccati solu-

tion [Kailath, 1980]. The proof of (7.15) and (7.30) is similar and thus omitted.

Furthermore, equality of (7.29) and (7.30) is immediate. U

In addition to yielding the closed form Riccati solution of parameter P,, Theo-

rem 7.2 also permits the following statement of a singular value property which is a

necessary (but not sufficient) condition for singular value flatness.

I
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Corollary 7.1 (Singular value equality at w = 0 and w = oo)

The error system GM(jw) constructed in the Central Glover Solution and based on

the parameter PM given by (7.29) or identically (7.30) possess singular values which

satisfy:

oi [G..M(jO)I = •, [G,(Joo)] V i (7.33)

Proof: Consider the normalized parahermitian system G(s) based on the pa-

rameter PM and defined analogous to (6B.1) as:

' ~G(s) =[A•

(-AT+aBTpMTc)r-I BT(I-pMTPM)B 0 --BT(I--PMTPM)
0 1' -1 (A-,CTP MB) 'AT r-i(GCTPM+EBT)

3 'AI2 0 1 0

(GPpMTC+BE 2 )r- (PMTP)B 0 P M

First note that A-' is given as:

= ( `T' AT-'BT(I PmTP,)BA-)
S 0 ii-1

Since A is defined by (6.25) as A = r-'(A- _alCTPMB), the matrix inversion

lemma [Kailath, 19801 may be employed to write A-' as:

A-' = [A-' + o,,A-'CTpm(I - MTPm)-'BA-1] r (7.34)

where M is defined by (7.11). Using (7.34), the quantity BA- 1 is given by:

DBA' = [I + MTpM(J - MTpM)-1] BA-'F

This is useful in carrying out the multiplication of CA-B which is given as:

= (CA--'B)li (CA-'B),2 • (7.35)
c(CA-8)21 (CA-' B)2 2 )

where, by defining J = (I - PTPm), the individual terms become:
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(C.A 1B), = #A, 2AT1BTJBA-1AT2

(CA'1B)1 2  = -A 12  12iBT

S(CA-1B)12 = _A12 T-'B TJ (i + BA-Ir-'(ac T pM + r 2BT))

(CA-'B)2, = (CA-1B)

(CA-'B) 22 = (alPMTC + BZ 2)F-IAT-'BTJ + JBA-Ir-I( IC TPM + E 2BT)

+(o•iPMc + BZ2)r-•T' BTJBAl-IF-l(GCTP + B

Given the definition for U in(7.32), the Hankel singular value relationship given

in Lemma 6.3 may be used to give an alternative definition of U, namely:

U = VVT + (I+W)(I+Wz)

=QQT  (7.36)

where

V = ()BA- 1 r4,2

W = BA-QN 2BT

Q = [V (I+W)I

By defining Z = (I - U)-' (I - U-), the desired matrix G(jO) = -CA-'B+ D

is given as:
(-CA-1 B + ,)), (-CA-'B + D),2  (

-CA-I3 + D= (-CA-1B+D)2 (-CA-'B+D)22 (

where the individual terms are given as (after much simplification):

(--C-'B + D)1 -" 2VTZV + 1

(-CA-'B+V),2 = 2VTZ(I+W)

(-CA-'B+I))21  = 2 (I + WT) ZV

(-CA-'B+*D)22 = 2(I+WT)Z(I+W)+I
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or in matrix form:

-CA1B15 E VTZV VTZ (I +W) )+( VZ(+WT) ZV , , .T)z(I+W)

= 2QTZQ+I (7.38)

where Q is defined by (7.36). Thus (7.38) gives:

A [-CA-'B + D] A [2QTZQ + I (7.39)

Use of both the eigenvalue shift theorem and the eigenvalue property A [AB] = A [BA]

gives:

[-CA 3 + D] = {1, 2A [ZU] + 1} (7.40)

where the form of the parameter U defined in (7.36) has been employed. Additionally,

the first eigenvalue (i.e. 1) corresponds to the largest eigenvalue of the normalized

system G(jO). Next the eigenvalues of G(jO) must be compared to those of G(jOO) =

D which are given by:

A[D] =1,A [PMTPM] (7.41)

Subsequent use of (7.29) along with the definitions of U and Z gives:

pMTpM = 2ZU + I (7.42)

Hence, the eigenvalues of 2D are given by:

A [-] = {1,2A [ZU] + 1} (7.43)

Comparison of (7.43) with (7.40) confirms that a, [GM,(jO)] = a, [Gem(joo)I Vj. U

Thus, the closed form Riccati solution PM of Theorem 7.2 not only satisfies norm

constraint (7.13), but, it also satisfies a necessary condition for error system singular

value flatness. The implications of these results in super-optimization are that all of

the error system singular values are simultaneously manipulated and guaranteed to

be less than the infinity norm of the optimal system. Therefore, early termination of

I
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the algorithm yields the implicit assurance that H' optimality is maintained. The

corresponding super-optimal algorithm based on the unique parameter P' is given

below.

Super-optimal Algorithm IV (General Case):

Given a stable n-state, m-input/m-cutput transfer function matrix G(M)(s), find the

super-optimal extension F8o(s). In the following, superscripts are used to represent

the iteration value.

Step 1. Initialization:

a. Compute the parameter PM given in Theorem 7.2.

b. Construct the Central Glover Solution Fm(°)(s).

c. Calculate and save the complementary maximizing vectors x±T (°)(s) and
y±(°)(s) using Lemma 6.6.

d. Compute the stable projection GM) (s) and the antistable projection Q2)(s)

using (6.22) and (6.23), respectively.

e. Set F,(.o)(s) = F_(°)(s).

Step 2. Iteration: for Z = 1 to n - 1 do the following:

a. For each iteration, compute the Central Glover Solution, the complementary

maximizing vectors, and the corresponding projections similar to above.

b. Accumulate the super-optimal extension as:

F(a)(s) = F('-')(s) + [P yxW)(s)] [FM ()(s) + Q()(s)J [ -I XT (k)(s)

The following example illustrates how the norm of the error system based on

either the parameter Pg of (7.9) or the parameter P? of (7.10) may exceed the

optimal Hankel norm resulting in the loss of H' optimality. In comparison, the

example also depicts how the error system based on the parameter PM of (7.29)

maintains Hw optimality during all stages of the super-optimal algorithm presented

above.

I
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Example 7.2 Consider the following minimal balanced realization of a 4-state, 3-

input, 3-output stable transfer function matrix G(M)(s):

-0.5293 0.0154 -0.0518 -0.0467 0.9471 0.1236 -0.4243

0.0273 -0.4658 0.0302 0.0366 -0.1766 -0.7787 -0.5192

0.0037 0.0616 -0.4521 0.0947 0.0700 -0.0378 0.1502

G(O)(s) = -0.0185 -0.0598 -0.0271 -0.5783 0.0189 -0.0643 -0.0219

-0.6339 0.6762 -0.1163 -0.0361 0 0 0

-0.6395 -0.0489 0.0965 -0.0569 0 0 0

0.5305 0.6689 0.0778 -0.0207 0 0 0

with flankel singular values given as {1.0318,0.9737,0.0320,0.0043}. The Central

Glover Solution parameters Pf, and Pk. as well as the parameter P, are calculated

to be (using (7.9), (7.10), and (7.29), respectively):

(-0.0913 -0.1003'\k (-0.3175 -0.1076)~P 0.7733 0.5598 0.9380 0.2244)

(-0.2410 -0.2093'

0.7201 0.5203

These parameters have the following norms:

5pR = 0.9639 -p = 1.0207 -Up• = 0.9436

and from these, it is clear that the error system based on the parameter Pk of (7.10)

will exceed the optimal Ilankel norm resulting in the loss of H' optimality. Fig. 7.2a

confirms this by depicting the largest singular value of the corresponding error system

Ge,(s) as the dotted line which has a maximum value of 1.0531. The solid line shown

in Fig. 7.2a depicts the largest singular value of the error systems based on either the

super-optimal approximation or the parameters Pf or PM (since the largest singular

values of all of these systems equal al) and clearly these error systems achieve H'

optimality. Fig. 7.2b depicts the second singular value of all four of the following

error systems: G,,,(s) (solid line), Ge(s) (dash-dot line), Ge*(s) (dashed line), and

G,,(s) (dotted line). Since the second singular values corresponding to G,,.(s) and

GeM(s), respectively, differ by only 0.0037%, the difference cannot be discerned in

Fig. 7.2b; therefore, Fig. 7.3a isolates these singular values on a single plot. This
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Figure 7.2: Singular value comparison of the first and second singular values. (a)
First singular value of the H' optimal error system (solid line) compared with the
first singular value of the error system Ge,, (s) (dotted line). (b) Second singular value
of the following error systems: Geo(S) (solid line), GeM(s) (dash-dot line), G,.(s)
(dashed line), and G•, (s) (dotted line).
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Figure 7.3: Singular value comparison of the secoihd and third singular values. (a)
Second singular value of Go.(S) (solid line) and GeM(s) (dash-dot line); here, the y-
axis increments are 0.00001. (b) Third singular value of the following error systems:
Geo(s) (solid line), GeM(s) (dash-dot line), G,,(s) (dashed line), and G,,,(s) (dotted
line).
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figure confirms the efficacy of the parameter PM since the corresponding error system

second singular value never exceeds the second s-number s•' by more than 3.7710 x

10'-. Therefore, early termination after a single iteration not only ensures H-

optimality, but also virtually annuls additional super-optimization improvements.

Finally, Fig. 7.3b completes the comparison with a depiction of the third singular

value the four following error systems: G•,o(s) (solid line), Gem(s) (dash-dot line),

Gk(s) (dashed line), and Ge,,(s) (dotted line). Once again, the third singular values

follow the same ordering as the second singular values with the error system GeM(s)

comparing favourably with the super-optimal error system G1,o(s).

7.5 Summary

Over the past decade, the H- approach has received much attention in the con-

trol community since it facilitates the design of robust feedback controllers which

maintain stability in the presence of plant uncertainty. In the context of H00 opti-

mization problems which can be cast in the 1-block framework, a unique and useful

characterization of the degrees of freedom available to the designer was given in

Chapter 6. This characterization proved useful originally in deriving expressions

for the maximizing vectors and their complementary components which, in turn,

allowed the construction of error systems which were uniquely matched to either

the left or right maximizing vector observability or controllability dynamics, respec-

tively. Subsequently, the matched error systems enabled the realization of totally

stable projections for the square case and minimal antistable projections for the gen-

eral case which produced significant computational improvements using the super-

optimal algorithms presented. Additionally, the singular value total flatness property

associated with the matched error systems for the square case was conjectured for

the nonsquare case in a manner which, when applied in the square case, maintained

approximation gramian stationarity. Although the resulting parameters Pt and

Pj, could be successfully deployed in super-optimization, early termination of the
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associated super-optimal algorithm required a strict upper bound on the norm of

the parameter P. To achieve this, a composite Riccati equation was derived from

the two symmetric Riccati equations previously used to obtain P* and P ,. The

resulting symmetric Riccati equation possessed the required property bounding the

norm of the parameter P, and, in addition, could be solved without recourse to

partitioning the eigenvectors of the Htamiltonian matrix. A super-optimal algorithm

employing the parameter P, was presented to simultaneously manipulate all of the

error system singular values and maintain H' optimality throughout each cycle of

super-optimization. Finally, the efficacy of the results of this chapter were demon-

strated by way of two illustrative examples.

I



Chapter 8

An evaluation of super-optimality as a

control tool: a relative stability
perspective

8.1 Introduction

There exist several design philosophies based on H°° optimal techniques, such

as mixed HI/H 2 control [Bernstein and Haddad, 1989; Zhou et al., 1990], y-

synthesis [Doyle, 1984], robustness optimization for coprime factor uncertainty [Mc-

Farlane and Glover, 19901, the equalizer principle [Nyman, 1991], and many others.

One of the usual control objectives which is considered in the literature [Doyle, 1984;

Glover, 19861 is the maximization of a feedback system's tolerance to additive un-

structured uncertainty and this, within the methodology of He' design, implies the

minimization of the infinity norm of an appropriate transfer function matrix. The

controller which achieves this minimization is generally nonunique [Limebeer et al.,

19891 and this non-uniqueness may be expressed in degrees of freedom [Glover, 1984;

Crews and Kouvaritakis, 1992a] which the designer may use to achieve further con-

trol design objectives. Thus, H' optimal design provides a framework which ensures

robust stability and permits some degrees of design freedom in the process.

Super-optimal design suggests that the degrees of freedom be exploited to min-

imize all the singular values in the H00 cost function. Although the super-optimal

design problem has been successfully solved using mathematically elegant state-space

algorithms given in [Limebeer et al., 1989; Tsai et al., 1988; Gu et al., 1989], the con-

trol engineering motivation for attaining super-optimality remains ambiguous. For

161
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instance, in a robust stability design problem for which both the plant and the con-
troller are diagonal, super-optimality clearly enhances the robustness of each channel

as demonstrated in [Tsai et al., 1988]; by contrast, in [Tsai et al., 1988] it is pointed

out that an equalizing solution1 would be impractical for design. In more general

multivariable design problems, the robustness properties resulting from employing a

super-optimal design become less clear.

The present chapter shows, by way of an example, that HOO super-optimal design

does not ensure optimal stability margins when considering additive unstructured

uncertainty. Furthermore, the degrees of freedom contained within the H°* frame-

work can be used to optimize stability margins, and thereby, attain a clear control

engineering objective. The next section gives the necessary background to convey

the notation and essential mechanics of the H' design process. Additionally, a

formulation of H• optimal design is presented which embodies some of the degrees

of freedom in the design process. Subsequently, it is shown how these degrees of

freedom may be used to achieve either super-optimality or maximize stability mar-

gins for a simple multivariable case. It is noted that, in the maximization, all of

the degrees of freedom available in HO design process have not been deployed (the

appropriate design procedure for the general case is given in the following chapter),

yet the resulting controller affords better stability margins than the super-optimal

controller. Finally, an example is given to illustrate the main point of this chapter;

interestingly, the solution which optimizes the stability margins, contrary to the

intuition presented in [Tsai et al., 1988], turns out to be an equalizing solution.

Moreover, the example given is in no way special and a procedure for generating

others is given.

'An equalizing solution is one in which all of the singular values of the error system equal the
optimal H'-norm.
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8.2 Development of main idea

8.2.1 Background

H"" design is based on the standard positive feedback configuration which comprises

in the forward path a linear dynamical system with transfer function matrix G(s)

and a linear controller with transfer function matrix K(s) as depicted in Fig. 8.1.

For this structure, the H"" design problem which addresses robust stability with

+K(s) G(s)

Figure 8.1: Multivariable feedback system

respect to the class Du of additive unstructured uncertainty A(s) is given by the

following optinization problem:

Stabizin ) jjp(s)K(s) (I - G(s)K(s)f < 1 (8.1)Stabilizing K(a) 0

where p(s) is a scalar, proper (but not strictly proper), stable, and minimum phase

radius function which satisfies:

-[CAjW)] < Ip(jW)j V W (8.2)

and '[. ] depotes the largest singular value of [. ]. As usual, the assumption is made

that all the instable poles of the additive perturbation A(s) are also poles of the

nominal plant G(s). As outlined in Chapter 5, the robust stability cost function given

in (8.1) is nonlinear in K(s) and can be transformed into the following equivalent

cost funct:-n which is affine in the Youla parameter Q(s):

min,,,, iI(s) (M1(S)U(S) + Q(S)) 0 1 (8.3)

QWERL
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The mechanics of this transformation require the following coprime factorizations for

the plant G(s) and the controller K(s):

G(s) = N(s)M-'(s) = i-(s)Ný(s) (8.4)

K(s) = [U(s)+M(s)Q(s)][V(s)+N(s)Q(s)]1  (8.5)

In conjunction with these factorizations, if the state-space representation of the plant

is given by G(s) = [ - then the state-space representation for the parameters

of (8.4) and (8.5) are given as [c.f. (5.11) and (5.12)]:

A- BBTPc B PoCT
M(s) U(s) _BTpc i 0 (8.6)

N(s) V(s) C- DBTP, D I

r (s) (S) A -P°CTC -B+P+ CTD 1pcT
-l(S) 1•(S) -B pc 1 0 (8.7)

C -D I

where P, and P, satisfy the following algebraic Riccati equations [c.f. (5.13) and

(5.14)]:

PA + ATp, - P•BBTp = 0 (8.8)

POAT + APo - PoCTCPo = 0 (8.9)

With the above definitions, the coprime factorization of the plant G(s) given in (8.4)

has M(s), N(s), M(s), and Ný(s) all stable (i.e. in RH+) and, in addition, has M(s)

and A•(s) both square and inner.

The state-space formulae of (8.6) and (8.7) can also be used to further simplify the

H' cost function (8.3). In particular, it is straightforward to show that state-space

representation of M-(s)U(s) simplifies to:

M-(s)U(s)= [ A -PCT] (8.10)
BTP. 0 J

The cost function (8.3) can be solved explicitly [for Q(s)] using Glover's state-space

formulae [Glover, 1984], referred to previously as the Central Glover Solution in

A) m m m mmll mmm ( ( ( (
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Chapter 6. For notational convenience, consider the following H"O cost function:

min JIG(s) - F(s)JI. (8.11)F(s)ERHf_

where G(s)2 is a completely stable transfer function matrix in RH+'. The state-space

formulae which constitute the Central Glover Solution F(s) were given previously

in Lemma 6.1 and the degrees of freedom contained in the Central Glover Solution

were characterized in terms of the parameter P (c.f. Lemma 6.2). Although the

parameter P of (6.24) completely characterizes the degrees of freedom contained

within the Central Glover Solution, it is noted that the general Glover solution has

more degrees of freedom, but for the present objective, it will be seen that the degrees

of freedom available in the central solution are sufficient to demonstrate the main

point of this chapter.

8.2.2 H' controller synthesis

The H' optimal design process can be expressed completely in terms of the degree

of freedom parameter P. In particular, H' optimal controller synthesis consists of

the following steps:

1. Determine the state-space representation of p(s)M'(s)U(s) using the
simplification of (8.10).

2. Separate the state-space representation of p(s)M-1 (s)U(s) into a sum of
stable and unstable terms, G,(s) and G,,(s), respectively.

3. Determine the Central Glover Solution F(s) based on G(s) = Gr(-S)
for a chosen value of P using (6.25) through (6.31).

4. Solve for Q(s) as Q(s) = - (FT(-s) + G,(s)) /p(s).

5. Construct the H' optimal controller K(s) using (8.5) in conjunction
with (8.6).

"2G(s) here is to be distinguished from the plant transfer function matrix. This conforms to
the notation originally given in [Glover, 1984] and previously adhered to in the HI optimization
problem (6.1).
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Clearly, different H' optimal controllers result by varying the parameter P as can

be seen in step 3 above. The next section describes how the parameter P can be

used to either achieve super-optimality or maximize the relative stability margins for

a simple multivariable case.

8.2.3 Computation of P for either super-optimality or the

maximization of relative stability margins for a sim-

ple case

In the 2-state square case, the parameter P is a scalar and represents the only

degree of freedom in the Central Glover Solution and, as reported in Chapter 6,

super-optimality involves the solution of a single quadratic equation [c.f. (6.40)]. In

particular, the choice of parameter P which attains super-optimality in the HOO cost

function (8.3) is given by:

P,o = (o, BC)- (A + ý/A 2 - (ariBC)2) (8.12)

where A, B, and C were defined by (6.32) through (6.34) and are all scalars. Sub-

sequent to attaining the super-optimal parameter P,,, steps 4 and 5 of the previous

section may be used to synthesize the H' super-optimal controller.

In contrast to super-optimality, design for the maximization of relative stability

margins seeks to maximize, over the class of uncertainty, the minimum distance from

the imaginary-axis to the system's worst case closed-loop poles. Assuming that the

dynamics associated with the relevant poles are not negligible (i.e. that the corre-

sponding modes are not nearly decoupled), this measure provides immediate insight

into the closed-loop dynamic performance and, in addition, it is unambiguous as

compared to alternative measures such as gain/phase margins for the case of multi-

variable systems. Clearly then, a small relative stability margin would imply a slow

and possibly oscillatory dynamic response and thus the maximization of this margin

forms an obvious desirable control objective. Note that this objective is sought in

addition to the maximization of tolerance to uncertainty which is already achieved
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thriough the use of the H' design process described at the end of Section 8.2.1. In

order to maximize relative stability margins within HO" optimal design, the degrees

of freedom should be used to maximize the "shift p" which the H' cost function

can sustain while ensuring robust stability. In particular, the parameter P should

be chosen so as to

max p*[P] (8.13)-l<_P<l

where p*[P] is defined as:

£ p*[P]= max Real [s] JsEC :det{I-(G(s)+A(s))K(s,P)} =01
& (a) E Du

(8.14)

where the dependence of K(s) on the parameter P has been made explicit. Addi-

tionally, the constraint in (8.13) that the parameter P lie in the range -1 < P < 1

arises from (6.24).

Remark 8.1 It should be noted that in the following chapter the associated rela-

tive stability margins will be maximized over the entire class of stabilizing controllers

whereas here, for purposes of comparison with super-optimality, the stabilizing con-

troller class is limited to the Central Glover Solution in H- optimal design.

Remark 8.2 The aim of (8.14) is to place the worst case poles as far to the left of

the imaginary-axis as possible and thus could theoretically result in fast but resonant

poles; this is not the case in the numerical example considered in Section 8.3. In

parallel with super-optimality, no special consideration has been given to the question

of damping. However, a slight modification of the procedure to include a "shift" [as

shown in (8.16) below] and a "rotation" of the imaginary-axis would cater for this

aspect of design.

Because the additive uncertainty A(s) is unknown, (8.14) does not represent

a practical means of computing the parameter P which maximizes (8.13) denoted

P7 ,M. However, under the assumption that the stable poles of A(s) have a real part

I. . . a d'- ] l
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which is less than -P. [Prsm], an equivalent definition of p* [P] is given by the smallest

solution p of

0(p, P) = 1 (8.15)

where 0(p, P) is given by:

0(p, P) = jjp(s -)g( - p,P) [I - G(s- p)K(s - pP) (8.16)

Here, it is assumed that it is possible to define a "shifted" radius function p(s - p)

which is proper, stable, and minimum phase and which gives an upper bound on

7 (A(s - p)) when s = jw. Under the assumption that (8.1) has a solution, it is

clear that the shift p 0 yields 0(0, P) < 1. On the other hand, 0(p,P) cannot

remain less than 1 for p positive and increasing because this would correspond to the

trivial case of a system with infinite stability margins. Hence, (8.15) will admit a

solution p'[P] for any P in the range -1 < P < 1. In addition, the assumption above

that the stable poles of A(s) be at least a distance -p*[Prm] from the imaginary-axis

is not necessary and can be avoided in a manner to be fully described in the following

chapter; presently, this assumption is invoked merely to keep the presentation simple.

Equation (8.15) can be solved by any nonlinear equation solver (e.g. regula falsi)

and thus generates values of p*[P] for any value of P. Consequently, any standard

optimization technique (e.g. FMIN in MATLAB) can be used to compute Pram.

For the simple case considered, a graph of the variation of p*[Pl as P varies from

-1 < P < 1 can be deployed to steer the algorithm to the global maximum. Sub-

sequent to computing P,..m, steps 4 and 5 of the previous section may be used

to synthesize the H' optimal controller, Krm(s). It should emphasized that the

algorithm above is sufficient to demonstrate that super-optimality does not optimize

the relative stability margins; a more general treatment will be given in the following

chapter. The next example highlights the distinction between ROO optimal designs

which use the parameter P to achieve either super-optimality or the maximization
of'relative stability margins.
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8.3 Illustrative example

Consider the following state-space description of an unstable plant:

1 0 -5 2]

G(S) =[AB]L0 2 4 --3

1 2 0 0

3 4 0 0

This example was chosen to conform to the simple case formulation of the previous

section and, other than having integer values in the state-space representation, has

no special properties. Suppose next that G(s) is subject to an additive perturbation

A(s) which has two unstable poles and whose other poles lie to the left of the point

(-0.2 +j0). A trivial but nonetheless valid choice of p(s) [and p(s - p)] is a constant

for which 5 [A(jw)] 5 1. Hence, for simplicity the radius function can be taken to

be unity, p(s) = 1, which yields a shifted ;:adias function which also equals unity,

p(s - p) = 1.

The state-space realization of M-'(s)U(s) may be expressed using (8.10) as:

1 0 -1.3448 -1.1379

AU [ p CT  0 2 1.6552 1.8621

BTp, 0 --0.2202 -0.9454 0 0
S0.8702 1.6867 0 0

For this example, Ga(s) M-(s)U(s) and G,(s) = 0 because both p(s) = 1 and

the original plant G(s) is completely unstable. Hence, the solution submitted for the

Central Glover Solution is G(s) - G( -s). The parameters A, B, and C defined

in (6.32) through (6.34) are given by:

A = -0.1926 B = -0.3633 C = 0.2278

Using these parameters along with a, = 0.6390 in (8.12) gives the super-optimal

parameter P as P., = 0.1399. Completing steps 3 through 5 of the HO design

process given in the previous section yields the following minimal realization of the
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super-optimal controller:

-1.7158 -0.5171 -0.8441

K..(s) = -0.7826 -0.2964 -0.2706

0.6062 0.2620 0.4320

The nominal closed-loop poles for the super-optimal design may be retrieved from

the nominal closed-loop state-space description and are given by:

{-0.5155, -1,-2) (8.17)

A 'worst case perturbation matrix Awe(s) can be obtained by the following procedure:

1. Determine the minimum shift pt at which a shifted E-Contour plot based on

the shifted uncertainty modulus function p(jw - Pt) and the shifted open-loop

transfer function matrix G(jw - pt)KO(jw - pt) first touches the critical point

(1 + j0).

2. Determine the frequency wt corresponding to the E-Contour in Step 1 which

first touched the critical point.

3. Compute the singular value decomposition of the shifted controller sensitivity
function evaluated at s = jwt - Pt:

XEYY = Ro(jwt - pt) = goo( jWt - pt)(I - G(Jwt - pt)Ko(jwt - pt

4. Since the uncertainty class considered is frequency independent and thus de-
pends on neither the frequency wt nor the shift pt, a sufficient worst case

uncertainty is given by the following major principal direction dyad:

Note that this worst case perturbation satisfies U [AWC] = 1 and therefore is on

the boundary of the uncertainty class Du.

Using the procedure outlined above, the shift pt = 0.1100 produces the first occur-

rence of an E-Contour contacting the critical point. The frequency corresponding

to this particular E-Contour is given by wt = 0; hence, using the major principal

directions of the controller sensitivity function Roo,(jO - 0.1100) yields the following

possible worst case perturbation matrix:

A.C = ( -0.1690 -0.1599

0.7064 0.6685
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The worst case closed-loop poles for the super-optimal design may be obtained using

a worst case closed-loop state-space description using G(s) + A,, in place of G(s).

Using A,, above gives the following worst case closed-loop poles:

{-0.1100, -1.7353 ± j0.9829} (8.18)

The maximum singular values of the residues of these closed-loop poles are 1.1768,

4.4025, and 4.4025 respectively, thereby indicating that the dynamics associated with

the pole at -0.1100 are by no means negligible.

The controller derived using H' design to maximize relative stability margins

chooses the degree of freedom P to maximize the shift p* [P) as given in (8.15).

Using a nonlinear equation solver, the parameter P which maximizes (8.15) is given

by Pr,, = -1 and the maximum shift is p*[-1] = 0.1254. Based on this, the

resulting controller is given by the following state-space description:

-3.1139 -0.5814 1.4774

Krsm(s) 1.5701 0.1577 -0.6193

-0.2356 0.6193 0.1577

The first evidence of improved relative stability margins is given by the nominal

closed-loop poles:

{-0.6832, -1, -2} (8.19)

Hlowever, the controller was designed to shift the worst case poles as far to the left
as possible within the HII design framework. In order to find a suitable worst case

perturbation matrix, the procedure outlined previously can be used with R/?am(s)

in place of Ro(s). Performing this procedure yields the shift pt = 0.1254 and the

frequency w, = 0 which are used in computing the specific value of the complementary

sensitivity function Rsm(s) at s = Jwt - pt. Using the major principal directions

of RIm(jO - 0.1254) permits the construction of the following possible worst case

perturbation matrix as:

( -0.3898 -0.3541

0.6293 0.5715
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This worst case uncertainty produces the following set of worst case closed-loop poles:

{-0.1254, -1.5220 ± jO.4170} (8.20)

To illustrate the functional relationship between p and P, Fig. 8.2(a) gives a plot

of the parameter P versus the shift p*[P]. From this plot, it can be seen that the

0.14 0.14

0 .12 . ....... ......... ................. ,......... .... ............... . 0 .1

0 .0 8 .... .... ... ...... ... ......... ............ ..... 0 .0 1 -.

0 . . . . ...06 -. ............. .. -. ; .......... . . ......... . . 0 .0 6 -.. ..... ... . ......... .. .... . .. . . . .. . . . . .. . . . .

0.04 - i ;' 0.04
-1 -0.5 0 0.5 1 -1 0 1

(a) (b)

Figure 8.2: (a) Plot of the Central Clover Solution degree of freedom parameter P
versus the shift p*[P] where P satisfies -1 < P < 1. The dashed line corresponds
to the super-optimal shift p*[0.1399] = 0.1100. (b) Plot of the shift p*[P] versus
the Central Glover Solution degree of freedom parameter P where P ranges from:
-1.5_<P_< 1.

maximal shift p*[Prsm] = 0.1254 occurs at Pr,,, = -1. This data also correlates

with the minimum distance from the imaginary-axis to the set of worst case closed-

loop poles as given in (8.20). Fig. 8.2(a) also depicts the super-optimal parameter

value of P., = 0.1399 and the corresponding shift p*[Po] = 0.1100 as indicated

by the dashed line. Similarly, this correlates with the minimum distance from the

imaginary-axis to the set of super-optimal closed-loop poles as given in (8.18).

Comparison of (8.18) with (8.20) clearly reveals that the H' super-optimal con-

troller produced worse results with respect to relative stability margins. Interestingly,

the singular values of the HOO cost function associated with the P = -1 solution

are equal over all frequencies [this is an equalizing (or all pass) solution]; hence the

second singular value is far from its minimal value as would otherwise be required in

super-optimal design.
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The maximum of p*[P] as seen from Fig. 8.2(b) occurs at P = -1.0494 which

lies outside the range of interest from -1 < P < 1. However, this is not always

the case and, therefore, the relative stability margin maximizer Prm will not always

turn out to be the equalizing solution. More importantly, whethor Pram leads to an

equalizing solution or not, Pr,,m will not, in general, coincide with P8 o.

8.4 Summary

Within the framework of H' optimal design which addresses additive unstructured

uncertainty, there are degrees of design freedom which may be used to enhance

robustness properties. Super-optimal design, albeit mathematically elegant, did not

ensure optimal robust stability as was demonstrated by way of a simple example.

Alternatively, the degrees of design freedom can be used to optimize relative stability

margins and therefore achieve a clear control objective; this objective will be fulfilled

for the general case in the following chapter.

i• mm nmnm un m mn m m m ,,. . .



Chapter 9

H' design for the maximization of

relative stability

9.1 Introduction

The previous chapter set forth a simple design procedure which synthesized optimal

relative stability margin controllers for a limited controller class, namely those con-

trollers which could be generated by optimizing the Central Glover Solution degree

of freedom parameter P in the 2-state square case. The purpose of this chapter is to

develop a more general' design procedure which attains the optimal relative stability

margin when the nominal plant is subject to an additive unstructured uncertainty.

As will be seen, the design procedure exploits the degree of freedom made available by

the upper bound (i.e. unity) of the robustness to additive unstructured uncertainty

HII cost function [c.f. (8.1)]. To see how this degree of freedom arises, it is only

necessary to point out that any internally stabilizing controller which satisfies the

upper bound constraint will, by definition, achieve robust stability. Thus, H' opti-

mality is not the precondition for robust stability; rather, the upper bound defines

the robust stability condition. Consequently, when the upper bound is strictly less

than one, the stabilizing controller class can be enlarged to include those stabilizing

controllers which attain the upper bound; hence, there exists some freedom in satis-

fying the robust stability constraint. Moreover, when the upper bound of the robust

stability cost function is strictly less than one, the synthesized controller achieves

robust stability not only for the given uncertainty class, but also for the expanded

'The number of inputs equals the number of outputs with no state order constraints.

174
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uncertainty class scaled by the maximum gain of the modulus function; therefore,

the corresponding H'° controller maximizes tolerance to uncertainty.

Rather than maximize tolerance to uncertainty, this work seeks to optimize rel-

ative stability by deploying the degree of freedom in terms of shifting the jw-axis in

the H• cost function until the upper bound either achieves unity or achieves some

prescribed upper limit less than unity; thus, the design procedure presented in the

sequel employs a shifted H' design technique. Although the concept of designing

with a shift has been used extensively in the LQG methodology [Anderson and

Moore, 1971; Anderson and Moore, 1989; Medanic et al., 1988; Kim and Furuta,

1988; Kawasaki and Shimemura, 1988], this work constitutes its first application in

the context of robust multivariable H' design. It is noted that similar work has been

accomplished for the SISO case in [Kimura et al., 1991]; however, the present work

was completed independently [Kouvaritakis et al., 1991] and resolves the unique and

critical multivariable design aspects.

It should be pointed out that even though LQG design has previously employed

a shift to obtain a guaranteed stability margin, the LQG design process caters only

for the nominal case; clearly the optimality of the nominal stability margin does not

generally imply the optimality of the perturbed stability margin. In contrast, the

optimal relative stability margin design procedure presented in this work directly

targets the worst case thereby ensuring optimality over the uncertainty class. It is

also recognized that by solving sub-optimal Hm problems as outlined in [Doyle et al.,

1989], we can deal with the case whereby the modulus function is specified; however,

within that approach there exist no systematic means of maximizing relative stability.

In order to support the ultimate development of the optimal relative stability

design procedure, the next section begins by distinguishing between the differing

design objectives of maximizing uncertainty tolerance and maximizing relative sta-

bility. Following this delineation, a SISO treatment is given to motivate the ensuing

theoretical development. Finally, the design synthesis is enumerated and its efficacy

illustrated by means of two numerical examples.
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9.2 Design Objectives

Consider the unity, positive feedback configuration depicted in Fig. 9.1 which com-

prises in the forward path a perturbed plant transfer function matrix G(s) + A(s)

and a controller with transfer function matrix K(s). With regard to this system,

r(s) K(s) G(s) + A(s) y(s)

Figure 9.1: Multivariable feedback system with positive feedback and additive un-
certainty.

the H0Y cost function [Glover, 1986] which addresses robust stability with respect to

the additive unstructured uncertainty class Du is given by (c.f. Section 5.3):

min IIp(s)R(s)II < 1 (9.1)
K(s) stabiizing

where p(s) is a biproper, stable and minimum phase modulus function which bounds

the norm of the additive unstructured uncertainty as:

S[A(jwL)] < Ip(Jw )1 (9.2)

and R(s) is the controller sensitivity function given by:

R(s) = K(s) [I - G(s)K(s)]-f (9.3)

Assuming that the nominal plant G(s) and the perturbed plant G(s) + A(s) share

the same number of unstable poles, it is straightforward to show that the controller

which optimizes (9.1) will also stabilize the perturbed system G(s) + A(s) for the

same uncertainty class D1, but whose corresponding modulus function p(s) is scaled

as p(s)/ Ip(s)R(s)IjI. Therefore, the optimization of (9.1) maximizes the amount by

which the modulus function p(s) can be increased which, in turn, yields the optimal

uncertainty tolerance.
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In some instances, maximizing tolerance to additive uncertainty forms a useful

design objective; however, this objective is distinct from the aim of maximizing

relative stability for a given uncertainty class Du. At this point, the clear resolution

of these differing design objectives requires a concise definition of "relative stability

margin." Conventionally, relative stability is measured in terms of gain and phase
margins for the case of scalar systems, or in terms of the suitable extension of the

classical concepts of gain and phase margins for the case of multivariable systems.

Although this measure of relative stability provides useful information concerning

closed-loop dynamic performance, the analysis can be misleading except for cases in

which either a single pole or a pole-pair dominates the frequency response. Thus, in

order to avoid possible ambiguity, the relative stability margin employed here will

be defined by the minimum distance from the imaginary axis to the set of worst case

closed-loop poles. Although this measure also has closed-loop dynamic performance

ramifications, the emphasis here remains on the worst case robust stability aspect

of the measure; hence, this measure correctly indicates when the perturbed system

can lose stability. Hereon for clarity, the use of the phrase "relative stability" will

implicitly convey this worst case aspect of the measure just defined.

It will be seen that, although the direct optimization of (9.1) automatically maxi-

mizes uncertainty tolerance, it does not implicitly maximize relative stability; indeed

examples will be presented to illustrate that the resulting controller can yield a rela-

tive stability margin which is far from optimal. Thus, the delineation of uncertainty

tolerance and relative stability raises the question as to whether one should maxi-

mize uncertainty tolerance or relative stability. Here, the view is taken that if the

uncertainty modulus function p(s) is potentially inaccurate2 , then maximizing uncer-

tainty tolerance constitutes a meaningful design objective. However, if the modulus

function p(s) accurately envelopes the uncertainty as often occurs in practice (c.f.

Section 9.3), then the alternative view is taken that maximizing relative stability con-

stitutes the more useful design objective. This objective will be accomplished in the
2This is tantamount to stating that there is an "uncertain" uncertainty characterization.,.
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sequel; however, we first require additional preliminaries to support the succeeding

theoretical development.

9.3 Theoretical preliminaries

In order to motivate the subsequent theoretical development, first consider a simple

open-loop unstable, scalar system consisting of a nominal plant g(s) which is subject

to an additive uncertainty 6(s) which also shares the same number of unstable poles

as g(s). Additionally, assume that the uncertainty 6(s) is subject to the following

constraint:

I6(Jw)I < a Ip(jw)l 0 < a (9.4)

where p(s) is a proper (but not strictly proper) stable and minimum phase, modulus

function and a is some positive, real, scalar constant. Based on (9.1), the H' optimal

controller which maximizes robust stability satisfies the following optimization:

min Ip(s)r(s)JI = min p(s)k(s) I (9.5)
k(s) stabilizing k(s) stabilizing 1 -1

where p is the constant modulus of the resulting all-pass system p(jw)r(jw). The key

fact from this simple example confirms the previous observation that the resulting

H' controller k(s) will not only achieve robust stability for the given uncertainty

class defined by (9.4) with a < 1, but also for the larger class of uncertainty defined

by (9.4) with a = 1/p.

From this discussion, it is clear that if there is uncertainty concerning the value of

a in (9.4), the controller resulting from the minimization (9.5) achieves a useful result.

Assuming however that a is known to be 1, it is possible to stipulate an unsealed

modulus function Ip(jw)I which defines a strict upper bound on the modulus of the

uncertainty b(jiw)I. Such a stipulation of the modulus function is generally possible

as illustrated in three different typical cases below:

Case A: The nominal plant g(s) is determined from a frequency response analysis

which yields values for the gain and phase of g(jw). Due to noise, such
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measurements are subject to a percent error on the basis of which it is

possible to stipulate lower and upper values for both the gain and phase of

g(jw). The circumscription of circles around the implied regions in which

g(jw) can lie determines the largest value of the uncertainty modulus

M(Ijw)l.

Case B: The system is described in terms of an ordinary linear differential equation

whose coefficients are known to lie within upper and lower limits. These

bounds may be used to compute regions in the complex plane within which

g(jw) must lie. Circumscription of these regions by circles will again yield

worst case estimates of the uncertainty modulus J,(jw)J.

Case C: On the basis of a statistical confidence analysis it is possible to determine

ellipsoidal regions in which the vector of numerator coefficients and the

vector of denominator coefficients must lie [Edmunds, 1984]. Once again

these can be mapped to the g-plane in order to determine the largest

value of the uncertainty modulus 1I(jw)I. It is pointed out that in the

case of discrete-time systems which are modelled in terms of a causal

weighting sequence (for the case of stable systems) or a bi-causal weighting

sequence, the calculation of p(ejwT) is straightforward and reduces to the

computation of the maximum eigenvalue of a known matrix function of

Z = ejwT [Cloud and Kouvaritakis, 1986; Cloud and Kouvaritakis, 1988;

Kouvaritakis and Rossiter, 19921.

In all of these cases a suitable modulus function p(s) can be computed from the

uncertainty modulus 16(jw)I and, hence, the maximization of the value of a given

in (9.4) for which stability can be maintained is no longer a high priority.

Given that a modulus function p(s) can be computed reliably (therefore removing

the uncertainty about a), it is of interest to assess the relative stability margin

characteristics of the H'" optimal controller resulting from the optimization of (9.5).

To enable such an assessment, consider the following definition of the relative stability

I[
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margin:

p[k]= max [Ileal(s)] I s EC : [g(s) + b(s)] k(s)= 1 (9.6)

where, for consistency with most of the H' literature, the positive feedback con-

vention has been followed (c.f. Fig. 9.1). Thus, the quantity p [k] measures the

minimum distance over the class of uncertainty from the imaginary-axis to the worst

case closed-loop poles. In order to simplify the ensuing presentation, define the

following notation:

X'(s) -X(s - p) (9.7)

where x(s) is some proper transfer function and the subscript p denotes a shift of the

imaginary axis to the left for p > 0. In addition, if it is assumed that the nominal

plant g(s) and the perturbed plant g(s) + b(s) have the same number of poles to

the right of the line defined by -p [k], then an equivalent statement to the relative

stability margin definition (9.6) is that the shifted perturbed sensitivity function

sp(s) = [1 - (gp(s) + bp(s)) k(p, s)]- (9.8)

be analytic in the closed right half complex-plane; here the controller k(p, s) is de-

signed at the shift p. Furthermore, if p(p,s) denotes a modulus function which

bounds the shifted perturbation bp(s):

Idb.(jW)1 < 1p(p, jW)1 (9.9)

then by the definition of the relative stability margin p [k] given in (9.6), the shifted

H- cost function (9.1) becomes:

rain p(p,s)r(s) min pps)kps) = 1 (9.10)

mk(p,) iizingk(,.) stabilizing 1 - gp(s)k(p, s)l__

where the shifted controller k(p,s) optimizes (9.10) and stabilizes the closed-loop

* containing the shifted, perturbed plant gp(s) + 6,,(s). It is pointed out the methods

used to compute the modulus function p(p, s) which bounds Ib(s)l are similar to

those used to compute the modulus function p(s) which bounds I6(s)l; in particular
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for cases B and C above, the procedure is identical. It is also pointed out that under

some assumptions concerning the pole/zero positions of the uncertainty 6(s) there

will exist a range of values for the shift p, 0 < p < p., over which it is possible to

use:

p(p,s) = pp(S) (9.11)

A more detailed analysis of the constraints required for the validity of (9.11) is

given in Section 9.5; for the time being suffice it to say that it possible to define a

suitable modulus function p(p, s) which is proper but not strictly proper, stable and

minimum phase. If k(_p)(p, s) represents the unshifted controller based on the shifted

optimization (9.10), then since k(._)(p, s) is based on the maximization of the relative

stability margin p [k] given by (9.6), this controller clearly affords a greater relative

stability margin over the controller based on the unshifted optimization (9.5). Thus,

given a fixed uncertainty bound p(s) it is perfectly feasible to generate the controller

which maximizes the relative stability margin p [k]; the machinery to generate this

controller will be developed in the next section after defining further notation as well

as the uncertainty class.

In the sequel, p(p, s) [or pp(s)] will continue to be scalar, however g(s), b(s),

and k(s) will be taken to be multivariable and will be denoted by G(s), A(s),

and K(s). Additionally, G(s) and p(p, s) will have the following state-space de-

scriptions:

G(s) P(P') Bp(p) (9.12)

and the corresponding shifted transfer function matrices will have the following state-

space descriptions:

GI (s) C+PAS) C A+pI (9.13)
0D cp |Dp

where the assumption has been made that AP = Ap(O), Bp = Bp(O), and Cp, = (0),

and where I denotes the identity matrix of conformal dimensions. Moreover, it will

be assumed that the perturbed plant G(s) + A(s) can be stabilized over the entire
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class of uncertainty. Since only the modulus of p(p,jw) or pp(jw) is of interest, it

is always possible to arrange for p(p, s) or pp(s) to be stable and minimum phase.

Furthermore, both p(p, s) and pp(s) will be assumed to be proper but not strictly

proper; this can be achieved by the introduction of zeros that lie well to the left of

the complex plane so that they will not affect any of the relevant calculations over

the desired system bandwidth 3 .

Finally, the class of additive unstructured uncertainty A(s) to be considered is

defined as

Du =1 A(s) (i) C(s) and G(s) + A(s) have the same number of unstable poles
Du A (ii) " [A(jw)] _I Jp(jw)I V w E R

Additionally, both the plant G(s) and the controller K(s) will be assumed to have

an equal number of inputs and outputs so that the implied HOO problem corresponds

to the 1-block problem.

9.4 Theoretical development

From the preliminary discussion of the previous section it follows that in the inter-

est of maximizing the relative stability margin of a system subject to an additive

perturbation A(s) one should consider the following optimization problem:

mrin Jp(p,s)Rp(s)IK = 1
K(p,s) stabilizing

-min Ilp(p,s)K(p,s)[I-Gp(s)K(p,s)]-'F l (9.14)
K(p,s) stabilizing

As will be seen, the optimization procedure which solves (9.14) has many close

parallels with the standard H¢¢ robust stability design procedure and these parallels

will be fully exploited. Thus, similar to the standard H- robust stability design

procedure, the following lemma determines a doubly coprime factorization for the

shifted plant Ge(s):

3The procedure suggested here is similar to that described in [Francis, 1987], p. 76.
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Lemma 9.1 (Inner coprime factorizations at the shift p)

For the non-negative shift p Ž_ 0, let P,(p) and Po(p) be the stabilizing solutions of

the following algebraic Riccati equations:

Pc(p) (A + pl) + (AT + pI) Pc(p) - Pc(p)BBTPc(p) = 0 (9.15)

Po(p) (AT + pI) + (A + pI) Po(p) - Po(p)CTCPo(p) = 0 (9.16)

and define M, ,Al, N, and N to be:

Afl(S) = [ABBTPc(p) B MB) [A-P(p)CTC -P.(p)CT (9.17)

N ) ABBTP(p) B 1A9.1PCTC 1C-DBrp(p) D C D
N~s)= C-DBTpc(p)A-Bp )BD N~(s) =[A-0;,)TC B-Po(P)C T DD ] (9.18)

Then the right and left coprime factorizations of G(s) are given, respectively, by:

G(s) = N(s)M-'(s) = M'-'(s)Nr(s) (9.19)

with M, N,k, N, Alp, Np, A-l, and NR all belonging to RH' and with the shifted

factors Alp and Mtp both being square and inner:

MPT(-s)MP(s) = MtP(s)MrVf (-s) = I (9.20)

Proof: Using standard state-space algebra [Francis, 19871 it is straightforward to

show that the shifted transfer function matrix G,(s) has the following right and left

coprime factorizations, respectively:

G,(s) = N,(s)M7'(s) = M1k,(s)Rp(s) (9.21)

This further implies (9.19) as well as ensures that Mf, Np, A)fp, and Np belong

to RH1. The subsequent use of standard state-space algebra in conjunction with

Riccati equations (9.15) and (9.16) confirms that the shifted transfer matrices Mp

and ft, are inner. Additionally, since the following holds:

A - BBTP,(p) = [A + p1 - BBTPd(p)] - pI (9.22)
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the poles of M and N are those of M, and N, with a backshift of -p. This confirms

that Ml and N are both in RH"; the proof for Al and N is similar and thus omitted.

Remark 9.1 Note that whereas M. and ICY are designed to be inner at the shift p,

in general the corresponding coprime factors after the backshift -p, namely M and

Ml, will not typically be inner for p > 0.

As will be seen, the innerness property (9.20) of MA(s) and flp(s) facilitates

norm-preserving simplifications of the shifted robust stability cost function (9.14) in

a manner analogous to that rendered in Section 5.3. In particular, recall that H'

synthesis requires the construction of unshifted inner factors Al(s) and Ml(s) in order

to produce the following H'-norm equivalence:

jp(s)R(s) , = I[p(s)M-A(s)U(s) + p(s)Q(s)[ (9.23)

Subsequently, the term p(s)A-1(s)U(s) is split into a sum of stable and unsta-

ble components in order to combine the stable component with the stable term

p(s)Q(s); the following lemma modifies this procedure to accommodate a shifted

design by first splitting the term p(p,s)MAj(s)Up(s) (analogous to (9.23)) into a

sum of stable and unstable terms. Furthermore, this lemma defines the relative

stability optimization function 0(p) which equals the Hankel norm of the complex-

conjugated unstable term and, therefore, also equals the infinity norm of the shifted

cost function 1ip(p, s)R,(s)IIo,.

Lemma 9.2 (Internal stability at shift and relative stability optimization

function 0(p))

With the definitions of Section 9.3 and Lemma 9.1 let the term p(p,s)M;'(s)U,(s)

be expressed as the following sum of stable and unstable components

[A p(p) B p(p) x A+p= -P0 (P)C] + A (p) (9.24)
[ Cp(p) Dp B

T
P.(p) 0 .C(p) 0 C,4(p) (
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where all the eigenvalues of A8(p) are stable and all the eigenvalues of A,,(p) are

unstable. Additionally, let the controllability and observability gramians, denoted by

X.(p) and Y.(p) respectively, be given by the solutions of the following Lyapunov

equations:

Au(p)X,(p) + X,(p)AT(p) + B,(p)BT(p) = 0 (9.25)

AT(p)Y,(p) + Y,(p)A,(p) + CT(p)C,(p) = 0 (9.26)

and define the relative stability optimization function O(p) to be the corresponding

Hankel norm given by:

O(P) = "max [X.(p)Y.(p)] (9.27)

Then the optimization function O(p) also satisfies:

ONp) min IJp(p,s)Rp(s)JIJ (9.28)

K(p,s) stabilizing

where K(p, s) achieves internal stability for the feedback system of Fig. 9.1 when

G(s) is replaced by G,(s).

Proof: Analogous to (8.5), the class of stabilizing controllers at the shift p may be

parameterized by the following factorization:

K(p,s) = [Up(s) + Mp(s)Q(s)] [Va(s) + Np(s)Q(s)]-' (9.29)

where Q(s) is a stable transfer function in RH+. Additionally, the backshifted, right

coprime factors U(s) and V(s) have the following state-space descriptions:

U(s) [ A-BBTpc(p) P(p)CT V(s) A-BBTp.(p) Po(p)CT (9.30)

[ BTp.(p) 0 JC-DBTpý(p) I I J
Using these definitions in conjunction with the innerness properties of Mp(s) and

AMp(s), it follows that the shifted H°° cost function may be expressed as:

min Jip(p,s)Rp(s)LJo
K(p,s) Stabilizing

m Q(a)ERH Ip(p,.S)M;1(s)Up(s)+P(PS)Q•s)II (9.31)
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In addition, a minimal realization of the term M,'(s)U,(s) can be found by carry-

ing out the multiplication and removing the unobservable/uncontrollable states to

obtain:

M7'(s)U( A+pI -P(p)CT 1 (9.32)
BT P(p) 0 J

Hence, by its definition the function 0b(p) can be shown [Glover, 1984] to be the

Hankel norm of the unstable part of the term p(p, s)MT'(s)Up(s). Moreover, this

Hankel norm defines the minimal value of 1ip(p, s)Rp(s)llU which can be achieved by

the controller of (9.29) for

Q(s) = p,,) IQt(s)+ "-A.(p) (9.33)

App, s t(s ) + C'(p 0

where Qopt(s) denotes any of the Central Glover Solutions (c.f. Lemma 6.1) which

satisfies (9.31). Finally it is noted that the modulus function p(p, s), by its definition

(c.f. Section 9.3), is stable, biproper, and minimum phase so that the unknown

transfer function matrix Q(s) of (9.33) is guaranteed to be in RH•. U

The relative stability margin optimization function 0(p) defined by (9.27) will

play a central role in determining the optimal controller, however, prior to employing

O(p) in actual design, we must first show the following:

(i) for 0(p) < 1, the resulting controller will be stabilizing,

(ii) the optimal relative stability margin (or shift) p* can be computed using (9.27)
without converging to local phenomena, and

(iii) the optimal relative stability margin can computed while respecting the con-
straints on the number of unstable poles shared by Ge(s) and Ge(s) + Ap(s).

Each of these issues will be addressed in turn beginning with the first:

Theorem 9.1 (Robust stability in terms of 0(p))

Let the nominal plant G(s) and the perturbed plant G(s)+ A(s) have the same number

of poles to the right of the line that is perpendicular to the real axis and passes through

the point (-p + jO) and let the uncertainty A(s) be defined by the class A E Du.
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Then under the assumptions and definitions of Section 9.3 and Lemmata 9.1 and 9.2

the condition

W(p) < 1 (9.34)

ensures the following robust stability condition:

det {I - [G(s) + A(s)] K(_.p)(p, s)} # 0

V s: Real(s) > -p, and V A(s) E D, (9.35)

where K(p, s) is the shifted controller given by (9.29) and K(_p)(p, s) denotes the

corresponding controller after applying the backshift -p.

Proof: (9.28) in conjunction with (9.34) implies that robust stability is maintained

at the shift p:

det {I - [Gp(jw) + A0(jw)] K(p,jw)} $ 0 V w E R (9.36)

Now by assumption the nominal plant G(s) and the perturbed plant G(s) + A(s)

have the same number of poles to the right of the vertical line through the point

(-p + j0) and hence, Ge(s) and Ga(s) + A,(s) share an equal number of unstable

poles. This, in combination with (9.36) together with the fact that K(p, s) stabilizes

Ga(s) implies (by homotopy arguments) that the shifted sensitivity function

Sr(s) = {I - [Ge(s) + As(s)] K(p,s)}-' (9.37)

is stable for all the perturbations A,(s) in the class considered by the theorem. After

application of the backshift -p, the sensitivity function may be expressed as

S(s) = {I - [G(s) + A(s)] K(_,)(p, s)}- (9.38)

Finally, since the sensitivity function S(s) is analytic everywhere to the right of the

line through (-p + jO), robust stability is ensured by (9.34). U

The next theorem derives the important monotonicity property of the optimal

relative stability cost function 0(p), hence enabling the use of simple and efficient
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bracketing methods (such as regula falsi) to determine the optimal relative stability

margin (or shift) p*.

Theorem 9.2 (Monotonicity of the function 0(p))

The relative stability optimization function 0(p) of Theorem 9.1 is a monotonically

increasing function of the shift p.

Proof: Since the definition of 0(p) depends on the modulus function p(p, s) and not

on the actual class of perturbations considered, we are at liberty to assume for the

moment that the stable poles of the perturbation A(s) all have real parts less than

-p for the range of values of p of interest. Thus, for simplicity and without loss of

generality, consider the hypothetical class of uncertainty for which

([A,(jw)] < [p(p, jw)I V w E R and 0_< p _ pi (9.39)

and for which all the stable poles of A(s) lie to the left of the vertical line through

(-P2 + JO) where 0 < p2. Next let p, lie in the following interval:

0 < PI < P2 (9.40)

and assume in contradiction to the statement of the theorem that

¢(P2) < €(PO) (9.41)

Then by Theorem 9.1, the sensitivity function

S(p2) = {I - [G(s) + A(s)/k(pA)] K(-.)(p2, s)} (9.42)

is analytic everywhere to the right of the vertical line through the point (-P2 + J0),

and thus also to the right of the vertical line through (-pi +jO). This together with

the fact that K(p2,s) stabilizes G,,2(s) or equivalently that K,,_.,2(p2,s) stabilizes

Gp,(s) implies that

sup& {p(pi,s)K _,P2 (p2 , s) [I - [G,,(s)K,,_..(p 2,s)]]-'} < O(P2) • 4,(pI)

(9.43)
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which contradicts the definition of 0(p) according to which 4(p1 ) is the minimal

value that the left hand side of (9.43) can attain over all possible controllers which

stabilize G,, (s).

The previous lemmata and theorems combine to give the main result of this work:

Theorem 9.3 (Computation of the optimal relative stability margin p*)

Let p, be the value of the shift p for which 0(p) = 1 and let p* be the largest value of

the shift p such that both p* < p, and the nominal plant G(s) and the perturbed plant

G(s) + A(s) have the same number of poles to the right of the line through the point
(-p* + O) making right angles with the real axis. Then p* is the optimal (maximal)

value of the relative stability margin. By maximal stability margin, we mean

max p [K] (9.44)K

where p [K] is the multivariable extension of (9.6) given by

p [K] m{a-x()Du [Real(s)] I s E C : det {I - [G(s) + A(s)] K(s)} = O}

(9.45)

The controller which achieves the optimal relative stability margin p* is given by (9.29)

and (9.33) for the shift p = p*.

Proof: Consider first the case when p" = Pl. By Theorem 9.2, the function 0(p)

satisfies 0(p) > 1 for all shifts p > p" which in turn implies that for any controller

K(p, s) which stabilizes the shifted plant G,(s) there exists a perturbation in the

class A(s) E Du such that for some frequency w, the following instability condition

is met:

det {I - [G,(jw) + A,(jw)) K(p,jw)} = 0 (9.46)

Hence, there does not exist a controller which will stabilize the shifted perturbed

plant G,(s) + A,(s) for all perturbations A,(s) or equivalently there does not exist a

controller which will place all of the closed-loop poles of the perturbed plant G(s) +
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A(s) to the left of the vertical line through (-p + jO) for shifts p > p*. Finally,

consider the case when p" < pi. By the arguments above it is known that

p* = maxp [K] < Pi (9.47)

and for all shifts p between p* and pl, the shifted nominal plant G,(s) and the

shifted perturbed plant Gp(s) + A,(s) will have a different number of unstable poles

for some perturbation in the class A(s) E Du. It is therefore not possible to find a

controller which stabilizes Gp(s) + Ap(s) for all Ap(s) which is equivalent to saying

that there does not exist a controller which can place all of the closed-loop poles of

the perturbed plant G(s) + A(s) to the left of the vertical line through the point

(-P* + )

Corollary 9.1 (Relative stability margin improvement with shift)

With the definitions of Theorem 9.3 the controller designed at the optimal shift pS

yields a relative stability margin which is greater than or equal to that of the controller

designed with no shift:

p [K(-P.) (p*,s)] > p[K(O,s)] (9.48)

Furthermore, equality is possible only when p* < pi and even in this case, (9.48) can

be made a strict inequality by replacing p(p, s) by p(p, s)/l(p*).

Proof: Use of the alternative definition of 0(p) given in (9.28) implies the following:

O(P*) = )Ip(p*,s)K(p*,(shI - )K(p*,s)]-'0

< Itp(p*,s)Kp.(O,s)[IGpaa(-)Kp.(O,s)]-'II

where K(p°, s) denotes the optimal relative stability margin controller designed at

the optimal shift p = p" and Kp.(O, s) denotes the HI optimal controller designed at

the shift p = 0 and subsequently employed at the shift p = p*. The strict inequality

above is due to the implicit exclusion of the trivial case K(p*, s) = K".(0, s). If the

optimal shift satisfies p* = pi, by Theorem 9.3 we have

p [K(_..)(p*,s)] = p* > p[K(O,s)] (9.49)
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and the result of the theorem clearly holds. However, if the optimal shift satisfies

p* < pl, two possibilities exist for the function 0(p*):

O~(p*) < 1 < Il~* s)K,,. (0, s) [I - G,. (s)Kp. (0, s)jf 1 j. (9.50)

O(* < (jp(p*,s)K,.(os)[I - Gp(s)Kp-(0,s)'II 00 <1 (.1

Of these the first implies (9.49) whereas (9.51) does not preclude the possibility

of (9.49) holding with equality in place of the inequality. However, in this latter case,

scaling the perturbation class by replacing p(p, s) with p(p, s)/ (p*) yields 0(p*) = 1

and, hence the previous analysis leading to (9.49) would hold. U

The conclusion to be drawn from Corollary 9.1 is as follows: if the optimal shift

satisfies p* = pi, then the H00 controller designed to minimize the infinity norm of

p(s)R(s) will not be optimal with respect to the relative stability margin p [K(0, s)].

Moreover, if the optimal shift satisfies p* < pl, the H00 controller K(0, s) will not be

optimal for the augmented class of perturbations with modulus function p(s)/4,(p*)

and may well not be optimal for the class with the unscaled modulus function p(s). In

contrast, the controller K(_p.)(p*, s) designed at the optimal shift and subsequently

backshifted is guaranteed to yield the optimal relative stability margin.

9.5 Synthesis of the optimal controller

This section describes the controller design procedure which achieves the optimal

relative stability margin p*. However, the precise statement of the procedure requires

the resolution of both of the following issues:

(i) An analysis of the constraints required for the use of the shifted modulus
function pp(s) in place of p(p,s) as per (9.11).

(ii) The computation of the optimal relative stability margin p*.

Each of these issues will be addressed in turn below.

The resolution of issue (i) above arises more as a matter of convenience rather

than necessity; as discussed in Section 9.3, the modulus function p(p,s) can be
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determined at each shift p in a manner analogous to the three typical situations

presented in Cases A through C. However, given the following state-space description

of the unshifted modulus function p(O, s) = p(s):

P(S) =[ 4 BC

it is clearly more efficient to simply shift the eigenvalues by p and use the shifted mod-
[ BS)I [p (p)

ulus function p,(s) = [2+ P I rather than recompute p(p, s) =
CP DP [P(P)

at each value of the shift p. Hence, it is desireable to know a priori the upper shift

limit pu (i.e. 0 < p < pu) over which the following choice of Ap(p), Bp(p), and Cp(p)

will be valid:

Ap(p) = Ap + pI Bp(p) = Bp Cp(p) = Cp (9.52)

It will be assumed that the upper shift limit pu over which (9.52) is valid can be

obtained from the possible pole and zero locations of the unshifted modulus function

p(s) as discussed next.

To gain insight into the determination of the upper shift limit p,,, consider the

following descriptions of a nominal, open-loop unstable plant and the corresponding

perturbed plant:
1 1

g(s) = • and g(s) + 5(s) = (9.53)
s-a _-(a-C)

where g(s) has a simple pole which satisfies a > 0 and c is an unknown real number

which satisfies [cl < a. Based on this information, a suitable choice for the unshifted

modulus function for b(s) is given by:

p(O,s) = + (9.54)

(S +a) (S+a -)

where e satisfies: Icl <_ e < a. Additionally, a suitable choice for the modulus

function of the shifted perturbation b5(s) is4:

p(, S) = (s- p + a)(s-p + a -e) (9.55)

4Although (9.54) and (9.55) are strictly proper, they can be made proper by introducing mini-
mum phase zeros as discussed in [Francis, 19871.
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The modulus function p(p, s) is valid for all shift values which satisfy 0 < p <

a -e = p. and, therefore for this example, (9.52) holds true for all shifts in the

interval 0 < p < p,, = a - e. As a further example, consider the unshifted modulus

function p(O, s) = e(s + z)/(s + a) with 0 < a < z. If it is known that b(s) has one

pole and one zero both of which lie to the left of the vertical line through (-a + jO)

then (9.52) will hold true for all p in the range 0 < p < pu = a. Thus, it will be

assumed that the upper shift limit p, can be determined from the possible pole and

zero locations of the modulus function.

The remaining issue (i.e. (ii) above) to be resolved is the actual computation of

the optimal relative stability margin p*. However, given the monotonically increasing

nature of the function 0(p) it is obvious that any bracketing method for the solution

of (9.27) [say the bi-section or the regula falsi method] can be used to converge to pi

(i.e. the value of the shift p for which the function 0(p) satisfies O(p') = 1). Providing

that the point (-Pi + jO) is sufficiently far away from the real part of the poles of the

nominal plant G(s) so that the point (-pl + jw) cannot be made to be a pole of the

perturbed plant G(s) + A(s) for any frequency w and any perturbation A(s) in the

uncertainty class Du, the value of the optimal shift p* will be given by p* = pl. This

presupposes that bounds on the possible locations of the poles of the perturbed plant

G(s) + A(s) can be stipulated, however this is possible in most practical situations.

For example, information concerning the upper and lower bounds of system time

constants or the natural frequencies and damping ratios can be used to determine

upper and lower bounds on the real part of the system poles. This information

can then be exploited to verify if the point (-pi + jO) is sufficiently far away from

the real part of a pole of the perturbed plant G(s) + A(s). Therefore, by using

the monotonicity of the function 0(p) and using information on the possible pole

locations of G(s) + A(s), the actual computation of the optimal shift p* is relatively

straightforward.

The resolution of both of the issues listed at the beginning of this section enables

the following description of the design procedure to construct the optimal controller
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Ii(_.)(p*, s) which maximizes the relative stability margin p*:

1. Determine the upper shift limit p, to preclude a shift across the stable
poles and zeros of p(s) and such that G(s) and G(s) + A(s) have the
same number of poles to the right of the line that is perpendicular to the
real axis and passes through the point (-p, + j0)

2. Compute pi such that €(pl) = 1 using any bracketing method.

3. Compute the optimal relative stability margin p* = min(pl, p").

4. Determine the state-space representation of pp. (s)M,.1'(s)Up.(s) using the
simplification of (9.32).

5. Separate the state-space representation of p,. (s)M-.1 (s)U,. (s) into a sum
of stable and unstable terms.

6. Determine the Central Clover Solution Qpt(s) and retrieve Q(s) as given

in (9.33).

7. Construct the optimal relative stability margin controller K(.P.)(p*,s)
using (9.29) in conjunction with (9.30).

This synthesis procedure is deployed in the following illustrative examples.

9.6 Illustrative examples

9.6.1 Scalar case

The following nominal plant transfer function was selected by some random means

_ 1.9235s3 + 24.6926s2 + 154.3848s + 302.1600

g(s) - s4 + 3.2045s3 - 21.5806s2 - 42.9658s + 107.2208 (9.56)

and has two unstable poles at {1.6412,3.6804} and two stable poles at {-3.6133,

-4.9128}. Let this plant be subject to an additive perturbation b(s) which has two

unstable poles and whose other poles lie to the left of the vertical line through the

point (-2 +jO). In addition, let the uncertainty class Du be defined by the following

modulus function

I6"(Jw)l < Ip(p,JW)I V p: 0o< p < 1 (9.57)
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where the unshifted modulus function is given by

p(s) = - + 0.1 (9.58)
s+2

To check how realistic the uncertainty class Du is for the given plant g(s), Fig. 9.2

vives a plot of the frequency response of g(s) with uncertainty circles of radius lp(jw)I

superimposed. From this figure it can be seen that the size of the uncertainty ranges

* 3

1

-1 ... . . ........... ........... i ... ..... ... . .

0 2

Figure 9.2: Scalar example frequency response plot of the perturbed plant g(jW) +
Ip(jW)I.

from about 20% of the magnitude of the plant Ig(jw)l at low frequencies to more

than 100% at high frequencies. This sort of behaviour is typical of many practical

applications [Doyle et al., 19921, and if anything it can be argued that the modulus

function p(jw) is chosen to be too large rather than too small. This observation is

made to emphasize the point that in many practical instances increasing tolerance to

uncertainty beyond ihe bounds set by p(s) does not necessarily form a useful design

objective.

The unshifted H' optimal controller k(0, s) which stabilizes the feedback system

of Fig. 9.1 for the plant g(s) of (9.56) is given by

k(0, s) = -6.950 (S4 + 10s3 + 29.2603s2 + 17.1797s - 18.6886) (9.59)

s4 + 18.3279s3 + 149.1335s 2 + 471.0315s + 478.1706

This controller minimizes the infinity norm of [p(s)r(s)] and yields the following
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all-pass transfer function:

p(jw)k(O,jw) =0.6950 V w (9.60)

1 -g(jw)k(O,jw)I

The implication of (9.60) is that the unshifted H10 optimal controller k(0, s) not

only stabilizes the nominal plant g(s), but also the perturbed plant g(s) + 6(s), for

all 6(s) E D, as well as all as the augmented class Dua defined by Du when the

modulus function p(s) is replaced by p(s)/0.6950. A convenient alternative way of

representing this information graphically is to plot g(jw)k(O, jw) and superimpose

circles of radius Jp(jw)k(Ojw)J with center g(jw)k(Ojw). This is done in Fig. 9.3a to

show that, as expected the band swept by the circles avoids the critical point' (1 + jO)

and encircles it twice in a counter-clockwise sense, thereby ensuring th. closed-loop

stability of both the nominal plant g(s) and the perturbed plant g(s) + 6(s) where

6(s) C D,. It can be seen that the band of circles would still just miss the critical

2 .............. i ..............i .. ..... .i .
~11

00

-1 .... .....

0 2 0
(a) (b)

Figure 9.3: Comparison of the relative stability margin based on the open-loop

frequency plots: (a) [g(jw) + Ip(jw)I] k(O,jw) where k(O, s) denotes the unshifted
H'I optimal controller (b) [g(jw) + Ip(jw)I] k(_p.)(p*,Jw) where k(_.f.)(p*, s) denotes
the controller which yields the optimal stability margin p* = 0.7612.

point (1 + jO) [and encircle it twice counter-clockwise] if the circles are all scaled by a

factor 1/0.6950. In conclusion therefore the unshifted H' optimal controller k(0, s)

appears to have done well as is further evidenced by the positions of the nominal

'This is the critical point for the positive feedback system of Fig. 9.1.
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closed-loop poles which are at:

{-0.5264, -1.6412, -3.6003, -3.6923, -4.9124, -121

To obtain the controller that maximizes the relative stability margin, p [k), (in

contrast to k(0, s) above which maximizes tile tolerance to uncertainty), regular falsi

was applied using the brackets p = 0 and p = 1.999 (this latter value being dictated

by the upper shift limit pu = 2 based on the pole positions of b(s)]. For this example,

the value of P, which makes the relative stability margin function satisfy 0(Pl) = 1

is obtained after 4 iterations to within 4 decimal places and is given by p1 = 0.7612.

By assumption all perturbations in the uncertainty class Du have the same number

of poles to the left of the vertical line through (-2 + jO) and so by Theorem 9.3 the

optimal shift is given by

p* = p, = 0.7612

The optimal relative stability margin controller based on the shift p* is given by

. -10 (s4 + 10.8174s 3 + 37.8698s 2 + 45.6415s + 10.3426) (9.61)
k(p.)(p , s) = s4 + 16.2096s3 + 133.0385s 2 + 424.0444s + 423.1013

The open-loop frequency response information based on this controller, analogous to

that already presented for k(0, s), is depicted in Fig. 9.3b, and at first sight appears

to have achieved the worst results. In particular it can be seen that the uncertainty

circles at high frequencies nearly touch the critical point (1 + jO). The implication

of this is that any increase in the size of the modulus function p(jw) could result in

instability; however, as was observed earlier, if anything Ip(jw)i gives an overestimate

of uncertainty, especially at high frequencies, and thus there is no need to consider

an even more pessimistic modulus function. Inspection of the nominal closed-loop

poles gives the first evidence of the improved relative stability margin achieved by

k(,p.)(p*, s):

{-1.2310, -3.2246, -3.6132, -4.9129, -5.2027, -12}

However this controller was designed to shift the worst case poles as far to the left as

possible, and it has achieved this as demonstrated by the shifted open-loop frequency
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response evaluated at the shift p = p*= -0.7612 as displayed in Fig. 9.4b. The

I

r~ ~ ............................... • .............. r
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Figure 9.4: Relative stability comparison of the open-loop shifted frequency response
plots using the optimal shift p* = Pi = 0.7612: (a) the shifted frequency response plot
of [gp.(jw) + Ipp.(jw)I] k,.(0,jw) reveals that the unshifted H' optimal controller is
not robustly stabilizing at this shift and therefore has a worse stability margin (b) the
shifted frequency response plot of [gp.((jw) + Ipp.(jw)l1 k(p*,jw) reveals the optimal
relative stability margin controller maintains stability since all of the uncertainty
circles touch the critical point but do not encircle it.

corresponding circles touch the critical point (1 + jO) [at all w frequency points]

indicating that there is a worst case perturbation A for which the closed-loop poles

lie on the vertical line through the point (-0.7612+jO). Indeed for the perturbation

6(s) = p(s) [which is clearly a member of the class] the closed-loop poles using the

optimal relative stability margin controller k(_p.)(p*, s) are

{-0.7612, -0.7612 ± j3.7264, -3.6133, -4.9128, -121

The corresponding open-loop shifted frequency response plot for the optimal tol-

erance to uncertainty controller k,.(0, s), shown in Fig. 9.4a, on the other hand

suggests that the worst case poles for this controller will certainly lie to right of the

line through the point (-0.7612 + jO) since the uncertainty circles include the critical

point. The precise location of the worst case pole using the controller k(0, s) can be

determined by plotting the open-loop frequency response of Fig. 9.4a for different

values of the shift p and choosing the value of the shift p for which the band of circles
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for the controller k(0, s) just touches the critical point (1 + jO). This, as is shown in

Fig. 9.5 happens for the shift p = 0.0652 which indicates that the worst case closed-

loop poles can lie within a distance of only 0.0652 from the imaginary axis. Indeed

0 2

Figure 9.5:
The open-loop shifted frequency response plot of [gp(jw) + Ip,(jw)J] k,(O,jw) based
on the shift p = 0.0652 clearly demonstrates the reduced stability margin (i.e. p =

0.0652) of the unshifted H"° controller k(0, s).

this is confirmed by the values below which indicate the positions of the closed-loop

poles achieved by the controller k(0, s) for the perturbation b(s) = p(s):

{-0.0652, -0.4936 ± j2.9212, -3.6133, -4.9128, -12}

Clearly then, although the H' controller did very well by way of tolerance to un-

certainty, it produced very poor results with respect to the relative stability margin.

This statement is reinforced by the fact that the worst case closed-loop poles cor-

responding to the HOO controller lie an order of magnitude closer to the imaginary

axis than those corresponding to the controller designed to maximize the relative

stability margin.

9.6.2 Multivariable example

The procedure followed above can be repeated for a multivariable example, the only

difference being that instead of the Nyquist diagram of g(s)k(s) together with associ-

ated uncertainty circles, here one has to plot the generalized Nyquist diagrams with
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the associated E-Contours [Daniel and Kouvaritakis, 19851 which define the regions

within which the eigenvalues of (G(s) + A(s)) K(s) can lie.

Consider the following state-space description of an open-loop unstable plant

G(S):

-4 0 0 0 8 3

0 -3 0 0 4 2

G(s) = AA_ = 0 0 1 0 -9 -6

0 0 0 2 4 7
-0.3288 -0.1644 0.3288 0.4932 0 0

0.1644 0.3288 1.3152 0.6576 0 0

Let this plant be subject to an additive perturbation A(s) E Du where the uncer-

tainty class D. is defined by the following modulus function:

1

P(= s+2 + 0'1

Hence, all possible perturbations A(s) satisfy I [A(j,,)] __ Ip(Jw)l. Additionally,

suppose that it is known that the perturbed plant G(s) + A(s) has the same number

of poles to the right of the vertical line through the point (-2 + jO). Analogous to

the previous example, this establishes an upper bound on the permissible shift (i.e.

p,, = 2) and therefore yields an upper bracket for the computation of the shift p, such

that the relative stability function O(Pl) = 1. The following results were obtained

and are presented in summary form:

The nominal closed-loop poles for the unshifted H' controller K(0, s) are:

{-0.8581, -1, -3, -4, -12, -121

The worst case closed-loop poles for the unshifted HOO controller K(0, s) are:

{-0.1812, -1.8289 ± jO.2747, -3, -4, -12, -12}

The optimal shift p* for the optimal relative stability margin controller K(_-,.)(p*, s)

is:

p" = 0.7266
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The nominal closed-loop poles for the optimal relative stability margin controller

K(_.)(p*, s) are:

{-2.2602, -2.4532, -3, -3.4532, -4, -12, -12}

The worst case closed-loop poles for the optimal relative stability margin controller

K(_p.)(p*, s) are:

{-0.7266, -2.6212, -3, -3.2583, -4, -12, -12}

The open-loop frequency response diagrams using K(0,jw) and K(.,.)(p*, s) are

shown in Figs. 9.6a and 9.6b, respectively. These confirm that closed-loop stability

results with either controller since both plots encircle the critical point (1 +jO) twice

in a counter-clockwise sense.

i t .......... ........................ ........... 2 ....- ..... ......

0-1
- 1 .. .............. i .............. . . . ...... . .

0 1 0 2

(a) (b)

Figure 9.6: Comparison of the relative stability margin based on the open-loop
frequency response plots where the uncertainty A(s) satisfiesU [A(jw)I < jp(jW)j: (a)
[G(jw) + A(jw)] K(0, jw) where K(0, s) denotes the unshifted HO optimal controller
(b) [G(jw) + A(jw)] K(.,.)(p*,jw) where K(_,.)(p*,s) denotes the controller which
yields the optimal stability margin p* = 0.7266.

Fig. 9.6b also confirms that the worst case closed-loop poles using the controller

K(.,,.)(p*, s) can lie within a distance of 0.7266 from the imaginary axis. The shifted

open-loop frequency response diagrams based on the shift p* = 0.7266 and using the

H'° controller K,.(0,i•w) in comparison with the optimal relative stability margin

controller K(p*,jw) are shown in Figs. 9.7a and 9.7b, respectively. Fig. 9.8 depicts
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Figure 9.7: Comparison of the relative stability margin using the open-loop shifted
frequency response plots where the optimal shift p* = pi = 0.7266 has been
used: (a) the shifted frequency response plot of (Gp.(jw) + A,.(jw)I H,.(0,jW)
reveals that the unshifted H' optimal controller is unstable at this shift and
therefore has a worse stability margin (b) the shifted frequency response plot of
[G,.(jw) + A,.(jw)] K(p*,jw) reveals that all of the uncertainty circles touch the
critical point for the controller designed at the optimal shift p* and stability is main-
tained.

the worst case shifted open-loop frequency response using K,(0, jw) for the shift value

p = 0.1812. Since the E-Contours touch the critical point (1 +jO), the worst case

closed-loop poles using this controller can lie within a distance of only 0.1812 from the

imaginary axis. The conclusion here is the same as for the scalar case: the unshifted

H- controller K(0, s) gave optimal results with respect to tolerance to uncertainty,

but very poor results with respect to the relative stability margin, especially when

these are compared with the optimal results achieved by the controller K(_,.)(p*, s).

9.7 Summary

This work has shown that when accurate upper bounds on the size of additive un-

certainty are known, maximizing tolerance to uncertainty beyond such bounds does

not form a useful design objective whereas maximizing the relative stability margin

constitutes the clear robust design aim. In order to achieve this robustness objective,

a shifted H' design technique was developed along with the necessary theory govern-

L
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Figure 9.8:
The open-loop shifted frequency response plot of [G,(jw) + A,,(jw)] K,(0,jw) using
the shift p = 0.1812 clearly demonstrates the reduced stability margin (i.e. p =

0.1812) of the unshifted H- controller K(O, s).

ing uncertainty bounding functions and the relative stability optimization function.

This work represents the first application of applying a shift in the context of multi-

variable H- design and aims directly at the maximization of the worst case relative

stability margin as measured by the position of the worst case closed-loop poles. The

approach was outlined and its superiority was clearly demonstrated in both scalar

and multivariable examples.



Chapter 10

Conclusions and future work

10.1 Restatement of objectives

Nominal system models are subject to an unavoidable amount of uncertainty and

effective control strategies must address this issue; therefore, this work was directed

at advancing the theory and understanding of robust multivariable control methods.

In this undertaking, a principal objective was the development of a robust interaction

analysis technique which exploits the geometric eigen-structure of the generalized

Nyquist/characteristic locus framework. In order to address robust design, this work

turned to H' optimal techniques and during this process, investigated the related

aim of characterizing and using the degrees of freedom to develop new mathematical

theory pertaining to HIf optimization. Following this, the objective of developing

a robust design procedure was pursued in order to optimize relative stability. All

of these objectives have been fulfilled in this work as expounded in the preceding

chapters. The remainder of this chapter summarizes this work in more detail and

proposes how it may be extended in the future.

10.2 Summary

Chapter 1 provided the background necessary to place this work in a proper historical

context. From this perspective, the general thesis objectives were stated in terms

of advancing the theory and understanding of robust multivariable control methods

pertaining to perturbed interaction, H°° super-optimization, and HI design for the

maximization of relative stability. In accordance with these objectives, the work

204
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of this thesis was divided into two main parts relating to the characteristic locus

approach and the h - optimal framework.

Preliminary material pertaining to uncertainty characterizations and the E-

Contour method was presented in Chapter 2. Moreover, an overview of the relevant

nominal and robust aspects of the generalized Nyquist/characteristic locus approach

was given in order to properly orient and motivate the ensuing discussion of interac-

tion. By way of counterexample, Chapter 3 confirmed that perturbed multivariable

interaction is uot inherently an open-loop property.

Chapter 4 characterized the worst case uncertainty which yields the maximum

interaction as measured by the misalignment angles. This characterization of the

worst case uncertainty enables an efficient determination of the worst case misalign-

ment angles and, taken together with the E-Contour method, provides a convenient

tool for assessing perturbed interaction using open-loop quantities.

Chapter 5 reoriented the thesis toward H' optimal techniques with a presenta-

tion of the general H' optimization problem. The Youla parametrization of inter-

nally stabilizing controllers not only transforms the nonlinear optimization into an

affine optimization, but it also facilitates the application of Hankel approximation

theory. Finally, the robust stability to additive unstructured uncertainty problem

was introduced to set the stage for the following theoretical development and robust

design treatment.

In Chapter 6, the degrees of freedom appertaining to the Central Glover Solution

within H'I optimization were characterized in a manner which could be naturally

exploited to achieve some well-defined mathematical properties. First, the degrees

of freedom were used for square case systems to obtain the stationarity of either

of the approximation system gramians. This, in turn, imposed singular value total

flatness on the corresponding matched error system. Moreover, since the matched

error systems shared either the controllability or observability dynamics with one

of the complementary maximizing vectors, the dimensionally reduced projections

were totally stable. The reduced computational complexity afforded by the stable
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projections was presented in an attendant super-optimal algorithm. Finally, the

computational efficiency was enhanced even further by the subsequent super-optimal

algorithm which exploited the minimal realization of the core recursion term.

Chapter 7 extended the results of Chapter 6 by considering general nonsquare

systems. The degrees of freedom were deployed to yield either singular value near

flatness or minimal antistable projections in the context of a super-optimal algo-

rithm. Although the near flatness solutions could be successfully deployed in super-

optimization, early termination of the associated super-optimal algorithm required a

strict upper bound on the norm of the degree of freedom parameter. To achieve this,

a composite Riccati equation was derived by merging the necessary conditions for

approximation gramian stationarity with the respective gramian Riccati equations.

The composite Riccati equation gave a unique solution which not only ensured H°'

optimality throughout each cycle of super-optimization, but the solution could also

be found in closed form without recourse to the standard Riccati solution procedure.

Chapter 8 evaluated a simple class of H' super-optimal controllers from a relative

stability perspective. In support of this, a simple procedure was developed in order to

demonstrate that super-optimal design does not implicitly optimize relative stability.

Chapter 9 presented a newly developed robust design technique to maximize the

worst case relative stability margin. This work represented the first application of

applying a shift in the context of multivariable H' design and aimed directly at

the maximization of the worst case relative stability margin as measured by the

position of the worst-case closed-loop poles. The specific cost function required to

maximize the relative stability margin was formulated along with the theory required

to optimize the cost function. Finally, the design process itself was given along with

illustrative examples.

ii
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10.3 Recommendations for future research

The work presented in this thesis suggests several avenues leading to potentially

rewarding future research in the area of robust multivariable control. From the

wealth of robust frequency domain results, most of the fruitful work apparently

originates from the classical approach initiated by Bode and Nyquist. Therefore, the

following suggestions for ensuing work all emanate from the frequency domain.

* A key direction of future research involves the development of a robust gener-

alized Nyquist/characteristic locus design procedure. The E-Contour method

enables a worst case relative stability assessment from the perturbed charac-

teristic locus bands. In addition, the work of this thesis enables a worst case

interaction assessment from the misalignment angles of the perturbed system.

Hence, the robust analysis tools are in place for potential extension to robust

design.

* A related direction of research encompasses the characterization of commuta-

tive commutative controllers based on the Youla parametrization. Since this

parametrization embraces the entire class of stabilizing controllers generated

by a free transfer function matrix Q(s) E RH+, future research could examine

how to use this degree of freedom to achieve controller commutativity with the

plant transfer function matrix. This would have the concomitant benefit of

removing previous artificial design constraints needed to ensure stability.

* Future research can also be focused on applications of the real rational sin-

gular value decomposition resulting from super-optimization. In particular,

the super-optimal error system has the following real rational singular value

decomposition:

Geo(s) = Y(s) E XT(s)

where X(-s) and Y(s) are the dynamic input and output principal directions

(i.e. maximizing vectors), respectively, and E contains the ordered, constant
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s-numbers [c.f. (6.21)]. Hence, prospective research could explore possible ap-

plications of this dynamic singular value decomposition.

* A final suggestion for future work lies in the extension of the shifted H'

design technique to additional HOO control problems. For example, it would

be interesting to determine the impact of shifted design in the mixed distur-

bance rejection performance and multiplicative output uncertainty robustness

problem; however in this case, a prime challenge would be in formulating a

* meaningful and precise measure analogous to the relative stability measure

defined in this work.
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